The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists.
- MeSH
- Ecology MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Sphagnopsida * MeSH
- Plants MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Genital mutilation/cutting is costly in terms of health, survival and reproduction, and the long-term maintenance of these practices is an evolutionary conundrum. Previous studies have suggested a mate-guarding function or various signalling functions of genital mutilation/cutting. Here we use phylogenetic comparative methods and two global ethnographic samples to study the origins and socio-ecological correlates of major types of female and male genital mutilation/cutting. Male genital mutilation/cutting probably originated in polygynous societies with separate residence of co-wives, supporting a mate-guarding function. Female genital mutilation/cutting originated subsequently and almost exclusively in societies already practising male genital mutilation/cutting, where it may have become a signal of chastity. Both have originated multiple times, some as early as in the mid-Holocene (5,000-7,000 years ago), considerably predating the earliest archaeological evidence and written records. Genital mutilation/cutting co-evolves with and may help maintain fundamental social structures, hindering efforts to change these cultural practices.
Torque teno felis virus (FcTTV) was detected in the cat population in the Czech Republic. A total of 110 serum samples were tested by a nested PCR technique using specific primers, situated in the highly conserved untranslated region of the virus genome. The frequency of feline TT virus in the Czech Republic was found to be 33.63%. Sequencing of PCR product from several virus strains showed that all of them are closely related and belong to the same virus species. Whole genome sequencing of three strains was performed to compare overall genetic heterogeneity of feline TT viruses. One of these three strains showed more that 10% difference at the nucleotide level. Furthermore we didn't find any correlation between FcTTV infection and sex or health status of examined animals.
- MeSH
- Phylogeny MeSH
- Genome, Viral genetics MeSH
- DNA Virus Infections epidemiology veterinary virology MeSH
- Cats virology MeSH
- Cat Diseases epidemiology virology MeSH
- Polymerase Chain Reaction veterinary MeSH
- Prevalence MeSH
- Torque teno virus genetics MeSH
- Viral Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Cats virology MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Acanthocephalans are a small group of obligate endoparasites. They and rotifers are recently placed in a group called Syndermata. However, phylogenetic relationships within classes of acanthocephalans, and between them and rotifers, have not been well resolved, possibly due to the lack of molecular data suitable for such analysis. In this study, the mitochondrial (mt) genome was sequenced from Pallisentis celatus (Van Cleave, 1928), an acanthocephalan in the class Eoacanthocephala, an intestinal parasite of rice-field eel, Monopterus albus (Zuiew, 1793), in China. The complete mt genome sequence of P. celatus is 13 855 bp long, containing 36 genes including 12 protein-coding genes, 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs) as reported for other acanthocephalan species. All genes are encoded on the same strand and in the same direction. Phylogenetic analysis indicated that acanthocephalans are closely related with a clade containing bdelloids, which then correlates with the clade containing monogononts. The class Eoacanthocephala, containing P. celatus and Paratenuisentis ambiguus (Van Cleave, 1921) was closely related to the Palaeacanthocephala. It is thus indicated that acanthocephalans may be just clustered among groups of rotifers. However, the resolving of phylogenetic relationship among all classes of acanthocephalans and between them and rotifers may require further sampling and more molecular data.
- MeSH
- Acanthocephala genetics MeSH
- Phylogeny * MeSH
- Genome, Mitochondrial genetics MeSH
- Polymerase Chain Reaction MeSH
- RNA, Ribosomal genetics MeSH
- RNA, Transfer genetics MeSH
- Rotifera genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Post-marital residence patterns are an important aspect of human social organization. However, identifying such patterns in prehistoric societies is challenging since they leave almost no direct traces in archaeological records. Cross-cultural researchers have attempted to identify correlates of post-marital residence through the statistical analysis of ethnographic data. Several studies have demonstrated that, in agricultural societies, large dwellings (over ca. 65 m2) are associated with matrilocality (spouse resides with or near the wife's family), whereas smaller dwellings are associated with patrilocality (spouse resides with or near the husband's family). In the present study, we tested the association between post-marital residence and dwelling size (average house floor area) using phylogenetic comparative methods and a global sample of 86 pre-industrial societies, 22 of which were matrilocal. Our analysis included the presence of agriculture, sedentism, and durability of house construction material as additional explanatory variables. The results confirm a strong association between matrilocality and dwelling size, although very large dwellings (over ca. 200 m2) were found to be associated with all types of post-marital residence. The best model combined dwelling size, post-marital residence pattern, and sedentism, the latter being the single best predictor of house size. The effect of agriculture on dwelling size becomes insignificant once the fixity of settlement is taken into account. Our results indicate that post-marital residence and house size evolve in a correlated fashion, namely that matrilocality is a predictable response to an increase in dwelling size. As such, we suggest that reliable inferences about the social organization of prehistoric societies can be made from archaeological records.
- MeSH
- Anthropology MeSH
- Archaeology * MeSH
- Housing * history MeSH
- Residence Characteristics history MeSH
- Family Characteristics * history MeSH
- History, Ancient MeSH
- Demography history MeSH
- Phylogeny * MeSH
- Humans MeSH
- Marriage * history MeSH
- Population Dynamics history MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Shark Bay, Western Australia is a World Heritage area with extensive microbial mats and stromatolites. Microbial communities that comprise these mats have developed a range of mitigation strategies against changing levels of photosynthetically active and ultraviolet radiation, including the ability to biosynthesise the UV-absorbing natural products scytonemin and mycosporine-like amino acids (MAAs). To this end, the distribution of photoprotective pigments within Shark Bay microbial mats was delineated in the present study. This involved amplicon sequencing of bacterial 16S rDNA from communities at the surface and subsurface in three distinct mat types (smooth, pustular and tufted), and correlating this data with the chemical and molecular distribution of scytonemin and MAAs. Employing UV spectroscopy and MS/MS fragmentation, mycosporine-glycine, asterina and an unknown MAA were identified based on typical fragmentation patterns. Marker genes for scytonemin and MAA production (scyC and mysC) were amplified from microbial mat DNA and placed into phylogenetic context against a broad screen throughout 363 cyanobacterial genomes. Results indicate that occurrence of UV screening compounds is associated with the upper layer of Shark Bay microbial mats, and the occurrence of scytonemin is closely dependent on the abundance of cyanobacteria.
- MeSH
- Amino Acids metabolism MeSH
- Phenols metabolism MeSH
- Photosynthesis MeSH
- Phylogeny * MeSH
- Glycine metabolism MeSH
- Indoles metabolism MeSH
- Microbiota radiation effects MeSH
- Cyanobacteria classification genetics isolation & purification metabolism MeSH
- Tandem Mass Spectrometry MeSH
- Ultraviolet Rays MeSH
- Computational Biology MeSH
- Bays microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
BACKGROUND: Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. RESULTS: Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. CONCLUSIONS: The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.
- MeSH
- ATP-Binding Cassette Transporters genetics MeSH
- Actinobacteria classification drug effects genetics isolation & purification MeSH
- Anti-Bacterial Agents biosynthesis MeSH
- Drug Resistance, Bacterial * MeSH
- Phylogeny * MeSH
- Genes, rRNA MeSH
- Methyltransferases genetics MeSH
- Molecular Sequence Data MeSH
- Soil Microbiology MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) is capable of infecting and developing mature myxospores in several cyprinid species. However, M. pseudodispar isolates from different fish show up to 5% differences in the SSU rDNA sequences. This is an unusually large intraspecific difference for myxozoans and only some of the muscle-dwelling myxozoan species possess such a high genetic variability. We intended to study the correlation between the host specificity and the phylogenetic relationship of the parasite isolates, and to find experimental proof for the putatively wide host range of M. pseudodispar with cross-infection experiments and phylogenetic analyses based on SSU rDNA. The experimental findings distinguished 'primary' and less-susceptible 'secondary' hosts. With some exceptions, M. pseudodispar isolates showed a tendency to cluster according to the fish host on the phylogenetic tree. Experimental and phylogenetic findings suggest the cryptic nature of the species. It is likely that host-shift occurred for M. pseudodispar and the parasite speciation in progress might explain the high genetic diversity among isolates which are morphologically indistinguishable.
The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in mouse embryonic fibroblasts (MEFs) results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 knockout (KO) in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other intraflagellar transport (IFT) proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi-cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.
- MeSH
- Cilia metabolism MeSH
- Fibroblasts * metabolism MeSH
- Phosphoric Monoester Hydrolases * metabolism MeSH
- Phylogeny MeSH
- Mice MeSH
- Proteins metabolism MeSH
- Protein Transport MeSH
- Carrier Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Three hundred and eighty-six heteropteran specimens belonging to more than 90 species captured in Ghana, Kenya and Ethiopia were examined for the presence of trypanosomatid flagellates. Of those, 100 (26%) specimens were positive for trypanosomatids and the spliced leader RNA gene sequence was obtained from 81 (80%) of the infected bugs. Its sequence-based analysis placed all examined flagellates in 28 typing units. Among 19 newly described typing units, 16 are restricted to sub-Saharan Africa, three belong to previously described species and six to typing units found on other continents. This result was corroborated by the analysis of the ssrRNA gene, sequenced for at least one representative of each major spliced leader RNA-based clade. In all trees obtained, flagellates originating from sub-Saharan Africa were intermingled with those isolated from American, Asian and European hosts, revealing a lack of geographic correlation. They are dispersed throughout most of the known diversity of monoxenous trypanosomatids. However, a complex picture emerged when co-evolution with their heteropteran hosts was taken into account, since some clades are specific for a single host clade, family or even species, whereas other flagellates display a very low host specificity, with a capacity to parasitise heteropteran bugs belonging to different genera/families. The family Reduviidae contains the widest spectrum of trypanosomatids, most likely a consequence of their predatory feeding behaviour, leading to an accumulation of a variety of flagellates from their prey. The plant pathogenic genus Phytomonas is reported here from Africa, to our knowledge for the first time. Finding the same typing units in hosts belonging to different heteropteran families and coming from different continents strongly indicates that the global diversity of the insect trypanosomatids is most likely lower than was predicted on the basis of the "one host-one parasite" paradigm. The analysis presented significantly extends the known diversity of monoxenous insect trypanosomatids and will be instrumental in building a new taxonomy that reflects their true phylogenetic relationships.
- MeSH
- Biodiversity MeSH
- Phylogeny MeSH
- Insecta parasitology MeSH
- Molecular Sequence Data MeSH
- Polymorphism, Genetic MeSH
- DNA, Protozoan chemistry genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Trypanosomatina classification genetics isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia MeSH
- Ghana MeSH
- Kenya MeSH