Fungal communities in soils under global change

. 2022 Sep ; 103 () : 1-24. [epub] 20220921

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36760734

Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology 103: 1-24. doi: 10.3114/sim.2022.103.01.

Zobrazit více v PubMed

Ackerman D, Millet DB, Chen X. (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles 33: 100–107.

Adair EC, Reich PB, Trost JJ,

Ahonen SHK, Ylänne H, Väisänen M, PubMed

Alexander JM, Diez JM, Levine JM. (2015). Novel competitors shape species’ responses to climate change. Nature 525: 515–518. PubMed

Allen CD, Macalady AK, Chenchouni H,

Alteio LV, Séneca J, Canarini A,

Alvarez-Garrido L, Vinegla B, Hortal S,

Anderegg WRL, Kane JM, Anderegg LDL. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change 3: 30–36.

Andrew C, Heegaard E, Hoiland K, PubMed

Andrew C, Heegaard E, Kirk PM,

Andrew C, Lilleskov EA. (2009). Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO PubMed

Anthony MA, Stinson KA, Moore JAM, PubMed PMC

Antoninka A, Reich PB, Johnson NC. (2011). Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytologist 192: 200–214. PubMed

Averill C, Dietze MC, Bhatnagar JM. (2018). Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology 24: 4544–4553. PubMed

Averill C, Hawkes CV. (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters 19: 937–947. PubMed

Averill C, Turner BL, Finzi AC. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545. PubMed

Avolio ML, Komatsu KJ, Collins SL, PubMed

Bahram M, Hildebrand F, Forslund SK, PubMed

Baldrian P, Větrovský T, Lepinay C,

Baldrian P, Šnajdr J, Merhautová V,

Barcelo M, van Bodegom PM, Soudzilovskaia NA. (2019). Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. Journal of Ecology 107: 2564–2573.

Bebber DP, Chaloner TM. (2022). Specialists, generalists and the shape of the ecological niche in fungi. New Phytologist 234: 345–349. PubMed PMC

Bebber DP, Ramotowski MAT, Gurr SJ. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change 3: 985–988.

Bell TH, Klironomos JN, Henry HAL. (2010). Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal 74: 820–828.

Birnbaum C, Hopkins AJM, Fontaine JB, PubMed

Blois JL, Zarnetske PL, Fitzpatrick MC, PubMed

Bond-Lamberty B, Bailey VL, Chen M, PubMed

Cao JL, Xie L, Zheng YX,

Cao JL, Lin TC, Yang ZJ,

Carvalhais N, Forkel M, Khomik M, PubMed

Chaloner TM, Gurr SJ, Bebber DP. (2020). Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications 11: 2955. PubMed PMC

Che RX, Wang SP, Wang YF,

Chen DM, Xing W, Lan ZC,

Chen YL, Xu ZW, Xu TL,

Choma M, Tahovská K, Kaštovská E, PubMed

Choma M, Rappe-George MO, Bárta J,

Clark CM, Cleland EE, Collins SL, PubMed

Cotton TEA. (2018). Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiology Ecology 94: fiy179. PubMed

Cotton TEA, Fitter AH, Miller RM, PubMed PMC

Crowther TW, Van den Hoogen J, Wan J, PubMed

Crowther TW, Todd-Brown KEO, Rowe CW, PubMed

Davison J, Moora M, Semchenko M, PubMed

de Oliveira TB, de Lucas RC, Scarcella ASD, PubMed

Delgado-Baquerizo M, Guerra CA, Cano-Díaz C,

Delgado-Baquerizo M, Doulcier G, Eldridge DJ,

Desaint H, Aoun N, Deslandes L, PubMed

Deveautour C, Power SA, Barnett KL,

Deveautour C, Donn S, Power SA, PubMed

Diez J, Kauserud H, Andrew C, PubMed PMC

Ding X, Chen S, Zhang B,

Dong Y, Wang Z, Sun H, PubMed PMC

Dunbar J, Gallegos-Graves L, Steven B,

Egerton-Warburton LM, Allen EB. (2000). Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10: 484–496.

Emery SM, Bell-Dereske L, Stahlheber KA,

Fay PA, Prober SM, Harpole WS, PubMed

Fernandez CW, Nguyen NH, Stefanski A, PubMed

Fernandez CW, Kennedy PG. (2016). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New phytologist 209: 1382–1394. PubMed

Freedman ZB, Romanowicz KJ, Upchurch RA,

Freeman BG, Lee-Yaw JA, Sunday JM,

Frey B, Carnol M, Dharmarajah A,

Frey SD, Ollinger S, Nadelhoffer KE,

Frey SD, Drijber R, Smith H,

Frey SD, Knorr M, Parrent JL,

Gamper H, Peter M, Jansa J,

Gao C, Kim YC, Zheng Y,

García-Palacios P, Crowther TW, Dacal M,

Garcia MO, Templer PH, Sorensen PO, PubMed PMC

Gehring C, Sevanto S, Patterson A, PubMed PMC

Geml J, Morgado LN, Semenova-Nelsen TA. (2021). Tundra type drives distinct trajectories of functional and taxonomic composition of arctic fungal communities in response to climate change–results from long-term experimental summer warming and increased snow depth. Frontiers in Microbiology 12: 628746. PubMed PMC

Geml J, Morgado LN, Semenova TA, PubMed

Gherardi LA, Sala OE. (2015). Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecology Letters 18: 1293–1300. PubMed

Guenet B, Lenhart K, Leloup J,

Guerra CA, Delgado-Baquerizo M, Duarte E, PubMed PMC

Guo W, Ding J, Wang Q,

Guo X, Zhou XS, Hale L, PubMed

Gutknecht JLM, Field CB, Balser TC. (2012). Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology 18: 2256–2269.

Han Y, Feng J, Han M, PubMed

Harte J, Saleska SR, Levy C. (2015). Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate–soil carbon feedback. Global Change Biology 21: 2349–2356. PubMed

Harvell CD, Mitchell CE, Ward JR, PubMed

Haugwitz MS, Bergmark L, Priemé A,

Hayden HL, Mele PM, Bougoure DS, PubMed

Hesse CN, Mueller RC, Vuyisich M, PubMed PMC

Hicks LC, Rahman MM, Carnol M,

Huang Q, Jiao F, Huang YM, PubMed

Huang JP, Yu HP, Guan XD,

IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom.

Isbell F, Reich PB, Tilman D, PubMed PMC

Jansson JK, Hofmockel KS. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology 18: 35–46. PubMed

Jansson JK, Tas N. (2014). The microbial ecology of permafrost. Nature Reviews Microbiology 12: 414–425. PubMed

Jeanbille DM, Clemmensen DK, Juhanson DJ, DOI

Jetz W, McPherson JM, Guralnick RP. (2012). Integrating biodiversity distribution knowledge: toward a global map of life. Trends in Ecology & Evolution 27: 151–159. PubMed

Jia X, Zhong Y, Liu J,

Jia X, Wang L, Zhao Y,

Jia M, Liu C, Li Y,

Jiang SJ, Liu YJ, Luo JJ, PubMed

Jo I, Fei S, Oswalt CM, PubMed PMC

Johnson NC. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185: 631–647. PubMed

Jones SK, Ripplinger J, Collins SL. (2017). Species reordering, not changes in richness, drives long-term dynamics in grassland communities. Ecology Letters 20: 1556–1565. PubMed

Jones SK, Collins SL, Blair JM, PubMed PMC

Jumpponen A, Jones KL. (2014). Tallgrass prairie soil fungal communities are resilient to climate change. Fungal Ecology 10: 44–57.

Juroszek P, Racca P, Link S,

Karst J, Wasyliw J, Birch JD, PubMed

Kauserud H, Heegaard E, Buntgen U, PubMed PMC

Kazenel MR, Kivlin SN, Taylor DL, PubMed

Kim D, Park HJ, Kim JH, PubMed

Kim YC, Gao C, Zheng Y, PubMed

Kim YC, Gao C, Zheng Y,

Kimball BA, Idso SB, Johnson S,

Kivlin SN, Emery SM, Rudgers JA. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany 100: 1445–1457. PubMed

Klironomos JN, Hart MM. (2002). Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12: 181–184. PubMed

Klironomos J, Rillig MC, Allen MF,

Knapp AK, Hoover DL, Wilcox KR, PubMed

Komatsu KJ, Avolio ML, Lemoine NP, PubMed PMC

Koven CD, Hugelius G, Lawrence DM,

Lagomarsino A, Knapp BA, Moscatelli MC,

Lagueux D, Jumpponen A, Porras-Alfaro A,

LeBauer DS, Treseder KK. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371–379. PubMed

Lee JY, Marotzke J, Bala G,

Lekberg Y, Arnillas CA, Borer ET, PubMed PMC

Lekberg Y, Koide RT, Rohr JR,

León-Sánchez L, Nicolás E, Goberna M, PubMed PMC

Li Y, Ma J, Yu Y, PubMed

Li B-B, Roley SS, Duncan DS,

Li JJ, Yang C, Zhou HK,

Li W, Sheng H, Liu Y,

Li WC, Sheng HY, Ekawati D,

Li L, McCormack ML, Chen F,

Li G, Kim S, Han SH,

Li G, Kim S, Park M,

Li X, Zhu T, Peng F, PubMed

Li Q, Bai H, Liang W, PubMed PMC

Lilleskov EA, Kuyper TW, Bidartondo MI, PubMed

Lilleskov EA, Hobbie EA, Horton TR. (2011). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecology 4: 174–183.

Lipson DA, Kuske CR, Gallegos-Graves LV, PubMed

Liu Z, Liu X, Wu X,

Liu Y, Tian H, Li J, PubMed

Liu M, Shen Y, Li Q,

Liu H, Mi Z, Lin L, PubMed PMC

Liu Y, Zhang H, Xiong M,

Liu Y, Li M, Zheng JW,

Lladó S, López-Mondéjar R, Baldrian P. (2017). Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews 81: e00063–16. PubMed PMC

Lorberau KE, Botnen SS, Mundra S, PubMed

Lu Y, Liu X, Chen F, PubMed PMC

Ma XC, Geng QH, Zhang HG, PubMed

Ma X, Zhu B, Nie Y,

Ma LN, Lü XT, Liu Y, PubMed PMC

Maaroufi NI, Nordin A, Hasselquist NJ, PubMed

Macarthur R, Levins R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377–385.

Maček I, Clark DR, Šibanc N, PubMed PMC

Maestre FT, Delgado-Baquerizo M, Jeffries TC, PubMed PMC

Maitra P, Zheng Y, Chen L,

Maya-Manzano JM, Muñoz-Triviño M, Fernández-Rodríguez S,

McHugh TA, Schwartz E. (2015). Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant and Soil 388: 175–186.

Melillo JM, Frey SD, DeAngelis KM, PubMed

Miyamoto Y, Terashima Y, Nara K. (2018). Temperature niche position and breadth of ectomycorrhizal fungi: Reduced diversity under warming predicted by a nested community structure. Global Change Biology 24: 5724–5737. PubMed

Moore JAM, Anthony MA, Pec GJ, PubMed

Morrison EW, Frey SD, Sadowsky JJ,

Mucha J, Peay KG, Smith DP, PubMed PMC

Mueller RC, Bohannan BJM. (2015). Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions. Oecologia 179: 175–185. PubMed

Mueller RC, Belnap J, Kuske CR. (2015). Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Frontiers in Microbiology 6: 891. PubMed PMC

Narayanan A, Ismert KJ, Smith MD,

Naylor D, Sadler N, Bhattacharjee A,

Nemani RR, Keeling CD, Hashimoto H, PubMed

Newsham KK, Hopkins DW, Carvalhais LC,

Nilsson RH, Anslan S, Bahram M, PubMed

Nilsson LO, Giesler R, Bååth E, PubMed

Nottingham AT, Meir P, Velasquez E, PubMed

Nunez MA, Horton TR, Simberloff D. (2009). Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90: 2352–2359. PubMed

Ochoa-Hueso R, Arca V, Delgado-Baquerizo M,

Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, PubMed

Odriozola I, Navrátilová D, Tláskalová P,

Panneerselvam P, Kumar U, Senapati A,

Peng F, Zhang W, Li C,

Phillips RP, Brzostek E, Midgley MG. (2013). The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist 199: 41–51. PubMed

Powell JR, Parrent JL, Hart MM, PubMed PMC

Procter AC, Ellis JC, Fay PA, PubMed PMC

Pugliese M, Cogliati E, Gullino ML, PubMed

Querejeta JI, Schlaeppi K, López-García Á, PubMed

Quinn TP, Erb I, Richardson MF, PubMed PMC

Redman RS, Sheehan KB, Stout RG, PubMed

Revillini D, Gehring CA, Johnson NC. (2016). The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems. Functional Ecology 30: 1086–1098.

Reynolds HL, Packer A, Bever JD,

Rillig MC, Ryo M, Lehmann A, PubMed PMC

Rodriguez-Ramos JC, Cale JA, Cahill JF, PubMed

Romero-Olivares AL, Melendrez-Carballo G, Lago-Leston A, PubMed PMC

Romero-Olivares AL, Allison SD, Treseder KK. (2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry 107: 32–40.

Romero F, Cazzato S, Walder F, PubMed

Rudgers JA, Afkhami ME, Bell-Dereske L,

Rudgers JA, Kivlin SN, Whitney KD, PubMed

Schwede DB, Simpson D, Tan J, PubMed PMC

Seebens H, Essl F, Dawson W, PubMed

Semenova TA, Morgado LN, Welker JM, PubMed

Shao P, He H, Zhang X, PubMed

She W, Bai Y, Zhang Y, PubMed PMC

Shen RC, Xu M, Chi YG,

Shi G, Yao B, Liu Y,

Shi Y, Zhang K, Li Q, PubMed

Shi G, Yao B, Liu Y,

Siciliano I, Berta F, Bosio P,

Siebold M, Tiedemann AV. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology 5: 62–72.

Smith MD, Knapp AK, Collins SL. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90: 3279–3289. PubMed

Solly EF, Lindahl BD, Dawes MA, PubMed

Song Y, Jiang L, Song C,

Soudzilovskaia NA, Douma JC, Akhmetzhanova AA,

Starke R, Mondéjar RL, Human ZR,

Steidinger BS, Bhatnagar JM, Vilgalys R,

Steidinger BS, Crowther TW, Liang J, PubMed

Štursová M, Šnajdr J, Cajthaml T, PubMed PMC

Sun Y, Wang C, Yang J,

Sun Y, Chen HYH, Jin L,

Sun J, Xia Z, He T,

Tahovská K, Choma M, Kaštovská E,

Tedersoo L, Bahram M, Polme S, PubMed

Thompson LR, Sanders JG, McDonald D, PubMed PMC

Tisserant E, Malbreil M, Kuo A, PubMed PMC

Tosi M, Deen W, Drijber R,

Treseder KK, Allen EB, Egerton-Warburton LM,

Treseder KK. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO PubMed

Treseder KK, Egerton-Warburton LM, Allen MF,

Tu Q, Yuan M, He Z, PubMed PMC

van der Linde S, Suz LM, Orme CDL, PubMed

van Diepen LTA, Entwistle EM, Zak DR. (2013). Chronic nitrogen deposition and the composition of active arbuscular mycorrhizal fungi. Applied Soil Ecology 72: 62–68.

van Diepen LTA, Lilleskov EA, Pregitzer KS. (2011). Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology 20: 799–811. PubMed

van Groenigen KJ, Qi X, Osenberg CW, PubMed

van Nuland ME, Smith DP, Bhatnagar JM, PubMed

Veresoglou SD, Anderson IC, de Sousa NMF, PubMed

Veresoglou SD, Barto EK, Menexes G,

Veresoglou SD, Caruso T, Rillig MC. (2012). Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant and Soil 368: 507–518.

Vesala R, Kiheri H, Hobbie EA, PubMed

Větrovský T, Morais D, Kohout P, PubMed PMC

Větrovský T, Kohout P, Kopecký M, PubMed PMC

Vlk L, Tedersoo L, Antl T, PubMed PMC

Vlk L, Tedersoo L, Antl T, PubMed

Wahdan SFM, Reitz T, Heintz-Buschart A, PubMed

Wallenstein MD, McNulty S, Fernandez IJ,

Walters DR, Bingham IJ. (2007). Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Annals of Applied Biology 151: 307–324.

Wang C, Sun Y, Chen HYH, PubMed

Wang J, Shi X, Zheng C, PubMed

Wang J, Zhang J, Wang C,

Wang N, Li L, Zhang B,

Wang H, Ta N, Jin K,

Wang H, Liu S, Schindlbacher A,

Wang C, Zhao X, Zi H,

Wang J, Bao J, Su J,

Weber SE, Diez JM, Andrews LV,

Weber CF, Vilgalys R, Kuske CR. (2013). Changes in fungal community composition in response to elevated atmospheric CO PubMed PMC

Wei X, Shi Y, Qin F,

Whiteside MD, Digman MA, Gratton E, PubMed PMC

Wolf J, O’Neill NR, Rogers CA, PubMed PMC

Wollan AK, Bakkestuen V, Kauserud H,

Wu Y, Kwak JH, Karst J,

Wu Y, Wu J, Saleem M,

Xiao Y, Li C, Yang Y, PubMed PMC

Xiong J, Peng F, Sun H, PubMed

Yan G, Han S, Wang Q,

Yang Y, Li T, Wang Y,

Yang X, Zhu K, Loik ME,

Yoshitake S, Tabei N, Mizuno Y,

Yu CQ, Han FS, Fu G. (2019). Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment 655: 814–822. PubMed

Zavalloni C, Vicca S, Büscher M,

Zelikova TJ, Housman DC, Grote EE,

Zhang J, Liu S, Liu C,

Zhang Y, Dong S, Gao Q,

Zhang H, Wang L, Liu H,

Zhang Y, Dong SK, Gao QZ, PubMed PMC

Zhang K, Shi Y, Jing X, PubMed PMC

Zhang Y, Dong SK, Gao QZ, PubMed

Zhang N, Wan S, Guo J,

Zhao A, Liu L, Chen B,

Zhao AH, Liu L, Xu TL, PubMed PMC

Zhao Q, Jian SG, Nunan N,

Zhao C, Miao Y, Yu C, PubMed PMC

Zheng J, Cui M, Wang C, PubMed

Zheng Z, Ma X, Zhang Y,

Zheng Y, Kim YC, Tian XF, PubMed

Zhong R, Xia C, Ju YW,

Zhou Z, Wang C, Luo Y. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications 11: 3072. PubMed PMC

Zhu C, Tian GL, Luo GW,

Žifčáková L, Větrovský T, Lombard V, PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...