Microbial community dynamics in two Central European peatlands affected by different nitrogen depositions
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
24-12596S
Czech Science Foundation
PubMed
40478762
PubMed Central
PMC12198764
DOI
10.1093/femsec/fiaf056
PII: 8157893
Knihovny.cz E-resources
- Keywords
- Sphagnum, biological nitrogen fixation, denitrification, microbiome, nitrogen deposition, peat bog,
- MeSH
- Bacteria * genetics metabolism classification MeSH
- Denitrification MeSH
- Nitrogen * metabolism analysis MeSH
- Nitrogen Fixation MeSH
- Phosphorus metabolism MeSH
- Microbiota * MeSH
- Wetlands * MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Sphagnopsida microbiology MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Nitrogen * MeSH
- Phosphorus MeSH
- Soil MeSH
- Carbon MeSH
Changes in organic matter accumulation in wetlands are critical for climate dynamics. Different nitrogen (N) inputs in Sphagnum-dominated peat bogs can lead to varying rates of carbon (C) and N accumulation, influencing greenhouse gas emissions. We investigated how contrasting N deposition shapes microbial communities in two Czech peat bogs, focusing on biological N2 fixation (BNF) as a key N input in pristine wetlands. Higher N deposition resulted in a more active microbial community with increased enzyme activity and C acquisition, potentially accelerating decomposition and reducing C storage. Enhanced denitrification, indicated by active nosZ Clade I genes, suggests that higher N inputs may increase N losses through denitrification. In contrast, the lower N site showed a less active microbial community with slower decomposition, beneficial for C sequestration, though potentially less adaptable to future N increases. Experimental BNF rates were 70 times higher at the high N site, consistent with elevated diazotroph activity indicated by active nifH gene. Phosphorus (P) availability and NH4+/NO3- ratios appeared to drive BNF differences, emphasizing the need for managed N inputs to maintain peatland ecological functions.
See more in PubMed
Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–9. 10.1073/pnas.0801925105. PubMed DOI PMC
Andersen R. Importance of microbes in peatland dynamics, restoration, and reclamation. In: Restoration and Reclamation of Boreal Ecosystems. Cambridge: Cambridge University Press, 2012.
Bååth E, Anderson T-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 2003;35:955–63. 10.1016/S0038-0717(03)00154-8. DOI
Baldrian P, Bell-Dereske L, Lepinay C et al. Fungal communities in soils under global change. Stud Mycol. 2022;103:1–24. 10.3114/sim.2022.103.01. PubMed DOI PMC
Bárta J, Applová M, Vaněk D et al. Effect of available P and phenolics on mineral N release in acidified spruce forest: connection with lignin-degrading enzymes and bacterial and fungal communities. Biogeochemistry. 2010;97:71–87. 10.1007/s10533-009-9363-3. DOI
Bárta J, Šlajsová P, Tahovská K et al. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry. 2014;117:525–37. 10.1007/s10533-013-9898-1. DOI
Basilier K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia. 1979;5:84–8.
Benner JW, Vitousek PM. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett. 2007;10:628–36. 10.1111/j.1461-0248.2007.01054.x. PubMed DOI
Borneman J, Hartin RJ. PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol. 2000;66:4356–60. 10.1128/AEM.66.10.4356-4360.2000. PubMed DOI PMC
Bragazza L, Freeman C, Jones T et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci. 2006;103:19386–9. 10.1073/pnas.0606629104. PubMed DOI PMC
Bragina A, Oberauner-Wappis L, Zachow C et al. The PubMed
Buzek F, Cejkova B, Jackova I et al. 15. N study of the reactivity of atmospheric nitrogen in four mountain forest catchments (Czech Republic, central Europe). Appl Geochem. 2020;116:104567. 10.1016/j.apgeochem.2020.104567. DOI
Caporaso JG, Lauber CL, Walters WA et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22. 10.1073/pnas.1000080107. PubMed DOI PMC
Dhandapani S, Ritz K, Evers S et al. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Sci Total Environ. 2019;655:220–31. 10.1016/j.scitotenv.2018.11.046. PubMed DOI
Diáková K, Biasi C, Čapek P et al. Variation in N DOI
Dise NB, Verry ES. Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry. 2001;53:143–60. 10.1023/A:1010774610050. DOI
Dohnal Z. Czechoslovak Peatlands. Prague: Czechoslovak Academy of Sciences in Czech, 1965.
Dossa GGO, Yang Y-Q, Hu W et al. Fungal succession in decomposing woody debris across a tropical forest disturbance gradient. Soil Biol Biochem. 2021;155:108142. 10.1016/j.soilbio.2021.108142. DOI
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. 10.1038/nmeth.2604. PubMed DOI
Fierer N, Leff JW, Adams BJ et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci. 2012;109:21390–5. 10.1073/pnas.1215210110. PubMed DOI PMC
Freedman Z, Zak DR. Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: implications for organic matter decay. Appl Environ Microbiol. 2014;80:4460–8. 10.1128/AEM.01224-14. PubMed DOI PMC
Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One. 2012;7:e42149. 10.1371/journal.pone.0042149. PubMed DOI PMC
Gallo M, Amonette R, Lauber C et al. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol. 2004;48:218–29. 10.1007/s00248-003-9001-x. PubMed DOI
Galloway JN, Townsend AR, Erisman JW et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 2008;320:889–92. PubMed
GARDES M, BRUNS TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8. 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
Godin A, McLaughlin JW, Webster KL et al. Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem. 2012;48:96–105. 10.1016/j.soilbio.2012.01.018. DOI
Hallin S, Philippot L, Löffler FE et al. Genomics and ecology of novel N PubMed DOI
Ho A, Bodelier PLE. Diazotrophic methanotrophs in peatlands: the missing link?. Plant Soil. 2015;389:419–23. 10.1007/s11104-015-2393-9. DOI
Hobbie SE. Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology. 2008;89:2633–44. 10.1890/07-1119.1. PubMed DOI
Houlton BZ, Wang Y-P, Vitousek PM et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature. 2008;454:327–30. 10.1038/nature07028. PubMed DOI
Hůnová I, Novák M, Kurfürst P et al. Comparison of vertical and horizontal atmospheric deposition of nitrate at Central European mountain-top sites during three consecutive winters. Sci Total Environ. 2023;869:161697. 10.1016/j.scitotenv.2023.161697. PubMed DOI
Jaszczuk I, Kotowski W, Kozub Ł et al. Physiological responses of fen mosses along a nitrogen gradient point to competition restricting their fundamental niches. Oikos. 2023;2023. 10.1111/oik.09336. DOI
Jones CM, Stres B, Rosenquist M et al. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 2008;25:1955–66. 10.1093/molbev/msn146. PubMed DOI
Keller JK, Bauers AK, Bridgham SD et al. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J Geophys Res Biogeosci. 2006;111. 10.1029/2005JG000152. DOI
Knorr K, Horn MA, Borken W. Significant nonsymbiotic nitrogen fixation in Patagonian ombrotrophic bogs. Glob Chang Biol. 2015;21:2357–65. 10.1111/gcb.12849. PubMed DOI
Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol. 1996;33:1441. 10.2307/2404783. DOI
Kõljalg U, Nilsson RH, Abarenkov K et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7. 10.1111/mec.12481. PubMed DOI
Kolton M, Weston DJ, Mayali X et al. Defining the DOI
Kox MAR, Aalto SL, Penttilä T et al. The influence of oxygen and methane on nitrogen fixation in subarctic PubMed DOI PMC
Kox MAR., Lüke C, Fritz C et al. Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant and Soil. 2016;406:83–100. 10.1007/s11104-016-2851-z DOI
Lamers LPM, Bobbink R, Roelofs JGM. Natural nitrogen filter fails in polluted raised bogs. Glob Chang Biol. 2000;6:583–6. 10.1046/j.1365-2486.2000.00342.x. DOI
Larmola T, Leppänen SM, Tuittila E-S et al. Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci. 2014;111:734–9. 10.1073/pnas.1314284111. PubMed DOI PMC
Lett S, Christiansen CT, Dorrepaal E et al. Moss species and precipitation mediate experimental warming stimulation of growing season N PubMed DOI
Limpens J, Berendse F, Blodau C et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences. 2008;5:1475–91. 10.5194/bg-5-1475-2008. DOI
Limpens J, Berendse F, Klees H. How phosphorus availability affects the impact of nitrogen deposition on DOI
Lin Y, Hu H-W, Deng M et al. Microorganisms carrying nosZ I and nosZ II share similar ecological niches in a subtropical coastal wetland. Sci Total Environ. 2023;870:162008. 10.1016/j.scitotenv.2023.162008. PubMed DOI
Liu L, Greaver TL. A review of nitrogen enrichment effects on three biogenic GHGs: the CO PubMed DOI
Liu Q, Qiao N, Xu X et al. Nitrogen acquisition by plants and microorganisms in a temperate grassland. Sci Rep. 2016;6:22642. 10.1038/srep22642. PubMed DOI PMC
Ma X, Song Y, Song C et al. Effect of nitrogen addition on soil microbial functional gene abundance and community diversity in Permafrost peatland. Microorganisms. 2021;9:2498. 10.3390/microorganisms9122498. PubMed DOI PMC
McDowell WH, Zsolnay A, Aitkenhead-Peterson JA et al. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biol Biochem. 2006;38:1933–42. 10.1016/j.soilbio.2005.12.018. DOI
Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700. 10.1128/aem.59.3.695-700.1993. PubMed DOI PMC
Nguyen NH, Song Z, Bates ST et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8. 10.1016/j.funeco.2015.06.006. DOI
Novak M, Buzek F, Jackova I et al. Isotope composition of dissolved organic carbon in runoff and peat leachates from a Central European wetland: temporal and spatial variability in DOC sources. Catena. 2019;173:217–25. 10.1016/j.catena.2018.10.011. DOI
Novak M, Stepanova M, Jackova I et al. Isotopic evidence for nitrogen mobility in peat bogs. Geochim Cosmochim Acta. 2014;133:351–61. 10.1016/j.gca.2014.02.021. DOI
Novak M, Zemanova L, Buzek F et al. The effect of a reciprocal peat transplant between two contrasting Central European sites on C cycling and C isotope ratios. Biogeosciences. 2010;7:921–32. 10.5194/bg-7-921-2010. DOI
Osono T, Takeda H. Fungal decomposition of Abies needle and Betula leaf litter. Mycologia. 2006;98:172–9. 10.1080/15572536.2006.11832689. PubMed DOI
Oulehle F, Fischer M, Hruška J et al. The GEOMON network of Czech catchments provides long-term insights into altered forest biogeochemistry: from acid atmospheric deposition to climate change. Hydrol Process. 2021;35. 10.1002/hyp.14204. DOI
Oulehle F, Kopáček J, Chuman T et al. Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ. 2016;140:456–68. 10.1016/j.atmosenv.2016.06.028. DOI
Parks DH, Tyson GW, Hugenholtz P et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4. 10.1093/bioinformatics/btu494. PubMed DOI PMC
Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil. Adv Agron. 2007;96:249–305.
Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6. 10.1093/nar/gks1219. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2024.
Rich JJ, Heichen RS, Bottomley PJ et al. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol. 2003;69:5974–82. 10.1128/AEM.69.10.5974-5982.2003. PubMed DOI PMC
Rydin H, Jeglum JK. The Biology of Peatlands. Oxford: Oxford University Press, 2013.
Saiz E, Sgouridis F, Drijfhout FP et al. Chronic atmospheric reactive nitrogen deposition suppresses biological nitrogen fixation in peatlands. Environ Sci Technol. 2021;55:1310–8. 10.1021/acs.est.0c04882. PubMed DOI
Sgouridis F, Yates CA, Lloyd CEM et al. Chronic atmospheric reactive N deposition has breached the N sink capacity of a northern ombrotrophic peatbog increasing the gaseous and fluvial N losses. Sci Total Environ. 2021;787:147552. 10.1016/j.scitotenv.2021.147552. PubMed DOI
Shabbir S, Qian C, Faheem M et al. New insights into the spatial variability of microbial diversity and density in peatlands exposed to various electron acceptors with an emphasis on methanogenesis and CO PubMed DOI PMC
Sinsabaugh RL, Carreiro MM, Repert DA. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry. 2002;60:1–24. 10.1023/A:1016541114786. DOI
Sirová D, Šantrůček J, Adamec L et al. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?. Annals of Botany. 2014;114:125–33. 10.1093/aob/mcu067 PubMed DOI PMC
Song L, Lu H-Z, Xu X-L et al. Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes. Sci Rep. 2016;6:30408. 10.1038/srep30408. PubMed DOI PMC
Stepanova M, Novak M, Cejkova B et al. Contrasting potential for biological N DOI
Sutton MA, Oenema O, Erisman JW et al. Too much of a good thing. Nature. 2011;472:159–61. 10.1038/472159a. PubMed DOI
Tedersoo L, Bahram M, Põlme S et al. Global diversity and geography of soil fungi. Science. 2014;346. 10.1126/science.1256688. PubMed DOI
Too CC, Keller A, Sickel W et al. Microbial community structure in a Malaysian tropical peat swamp forest: the influence of tree species and depth. Front Microbiol. 2018;9. 10.3389/fmicb.2018.02859. PubMed DOI PMC
Turetsky MR, Benscoter B, Page S et al. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci. 2015;8:11–4. 10.1038/ngeo2325. DOI
van den Elzen E, Kox MAR, Harpenslager SF et al. Symbiosis revisited: phosphorus and acid buffering stimulate N
van den Elzen E, van den Berg LJL, van der Weijden B et al. Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Sci Total Environ. 2018a;610–611:732–40. 10.1016/j.scitotenv.2017.08.102. PubMed DOI
Vile MA, Kelman Wieder R, Živković T et al. N DOI
Vitousek PM, Aber JD, Howarth RW et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7:737–50.
Waldrop MP, Zak DR, Sinsabaugh RL et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl. 2004;14:1172–7. 10.1890/03-5120. DOI
Wang C, Zheng M, Song W et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem. 2017;113:240–9. 10.1016/j.soilbio.2017.06.019. DOI
Wang Y, Lett S, Rousk K. Too much of a good thing? Inorganic nitrogen (N) inhibits moss-associated N DOI
Widdig M, Schleuss P-M, Weig AR et al. Nitrogen and phosphorus additions alter the abundance of phosphorus-solubilizing bacteria and phosphatase activity in grassland soils. Front Environ Sci. 2019;7. 10.3389/fenvs.2019.00185. DOI
Wille EA, Lenhart CF, Kolka RK. Carbon dioxide emissions in relation to water table in a restored fen. Agric Environ Lett. 2023;8. 10.1002/ael2.20112. DOI
Xiang X, Wang H, Tian W et al. Composition and function of bacterial communities of bryophytes and their underlying sediments in the Dajiuhu Peatland, Central China. J Earth Sci. 2023;34:133–44. 10.1007/s12583-020-1391-x. DOI
Xiao D, Tan Y, Liu X et al. Responses of soil diazotrophs to legume species and density in a Karst grassland, southwest China. Agric Ecosyst Environ. 2020;288:106707. 10.1016/j.agee.2019.106707. DOI
Yang Q, Liu Z, Bai E. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. Glob Chang Biol. 2023;29:6350–66. 10.1111/gcb.16915. PubMed DOI
Yayi N, Yulong D, Yuqiang L et al. Soil microbial community responses to short-term nitrogen addition in China's Horqin Sandy Land. PLoS One. 2021;16:e0242643. 10.1371/journal.pone.0242643. PubMed DOI PMC
Zhang W, Hu Z, Audet J et al. Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland. Biogeosciences. 2022;19:5187–97. 10.5194/bg-19-5187-2022. DOI
Zhao B, Zhuang Q. Nitrogen cycling feedback on carbon dynamics leads to greater CH DOI
Živković T, Helbig M, Moore TR. Seasonal and spatial variability of biological N DOI