Associations among Farm, Breed, Lactation Stage and Parity, Gene Polymorphisms and the Fatty Acid Profile of Milk from Holstein, Simmental and Their Crosses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1510336
Národní Agentura pro Zemědělský Výzkum
GAJU 028/2019/Z
USB Grant Agency
PubMed
34828016
PubMed Central
PMC8614357
DOI
10.3390/ani11113284
PII: ani11113284
Knihovny.cz E-zdroje
- Klíčová slova
- AGPAT6, DGAT1, FASN, LEP, SCD1, genetic and non-genetic factors, milk fatty acids,
- Publikační typ
- časopisecké články MeSH
This study aimed to analyze the factors affecting the fatty acid (FA) profile in cow's milk. The effects of a farm, lactation parity and stage, breed and polymorphisms in the AGPAT6, DGAT1, LEP, FASN and SCD1 genes were evaluated. A total of 196 Holstein cows, 226 Simmental cows and seven crosses were sampled 751 times. The cows were kept at five farms and were in the first up to the sixth lactation, and 49 individual FAs and 11 groups were analyzed. The farm significantly affected the proportion of all FAs except for C16:1n-7c and isoC14:0. Additionally, the lactation stage was significant for most FAs, and the opposite was true for lactation parity. The effect of the breed was negligible. For the gene polymorphisms, the SCD1 TT genotype exceeded the CC in C10:0, C12:0, C14:0, C16:1n-7c and C18:2, and the opposite was true for C10:1, C12:1, C14:1n-5c, isoC17:0, C16:1 and C18:1, i.e., the TT genotype was higher for saturated FAs, and the CT genotype was higher for monounsaturated FAs. The results hint at the intermediary heredity of the SCD1 gene. The FASN gene was strongly associated with four FAs and branched-chain FAs, and genotype AG was better than GG. LEP was significant for five individual FAs and branched-chain FAs. The differences in FA composition among genotypes were rather small, which could lead to overestimation of the effect and needs to be considered in the next research.
Dairy Research Institute s r o Ke Dvoru 12a 160 00 Prague Czech Republic
Institute of Animal Science Přátelství 815 104 00 Praha Uhříněves Czech Republic
Zobrazit více v PubMed
Hossein-Zadeh N.G. A meta-analysis of heritability estimates for milk fatty acids and their genetic relationship with milk production traits in dairy cows using a random-effects model. Livest. Sci. 2021;244:104388. doi: 10.1016/j.livsci.2020.104388. DOI
Lopez-Villalobos N., Spelman R.J., Melis J., Davis S.R., Berry S.D., Lehnert K., Sneddon N.W., Holroyd S.E., MacGibbon A.K., Snell R.G. Genetic correlations of milk fatty acid contents predicted from milk mid-infrared spectra in New Zealand dairy cattle. J. Dairy Sci. 2020;103:7238–7248. doi: 10.3168/jds.2019-17971. PubMed DOI
Park C.H., Ranaraja U., Dang C.G., Kim J.J., Do C.H. Genetic parameters for milk fatty acid composition of Holstein in Korea. Asian Australas. J. Anim. Sci. 2020;33:1573–1578. doi: 10.5713/ajas.19.0820. PubMed DOI PMC
Bobbo T., Penasa M., Cassandro M. Genetic parameters of bovine milk fatty acid profile, yield, composition, total and differential somatic cell count. Animals. 2020;10:2406. doi: 10.3390/ani10122406. PubMed DOI PMC
Manuelian C.L., Penasa M., Visentin G., Benedet A., Cassandro M., De Marchi M. Multi-breed herd approach to detect breed differences in composition and fatty acid profile of cow milk. Czech J. Anim. Sci. 2019;64:11–16. doi: 10.17221/18/2018-CJAS. DOI
Safina N.Y., Shakirov S.K., Ravilov R.K., Sharafutdinov G.S. Associations of the SCD1 gene SNP with fatty acids composition of Holstein cows. BIO Web Conf. 2020;27:00060. doi: 10.1051/bioconf/20202700060. DOI
Li C., Sun D.X., Zhang S.L., Yang S.H., Alim M.A., Zhang Q., Li Y.H., Liu L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet. 2016;17:110. doi: 10.1186/s12863-016-0418-x. PubMed DOI PMC
Klímová A., Kašná E., Machová K., Brzáková M., Přibyl J., Vostrý L. The use of genomic data and imputation methods in dairy cattle breeding. Czech J. Anim. Sci. 2020;65:445–453. doi: 10.17221/83/2020-CJAS. DOI
Palombo V., Pegolo S., Conte G., Cesarani A., Macciotta N.P.P., Stefanon B., Marsan P.A., Mele M., Cecchinato A., D’Andrea M. Genomic prediction for latent variables related to milk fatty acid composition in Holstein, Simmental and Brown Swiss dairy cattle breeds. J. Anim. Breed. Genet. 2021;138:389–402. doi: 10.1111/jbg.12532. PubMed DOI
Maurić M., Mašek T., Ljoljić D.B., Grbavac J., Starčević K. Effects of different variants of the FASN gene on production performance and milk fatty acid composition in Holstein × Simmental dairy cows. Vet. Med.-Czech. 2019;64:101–108. doi: 10.17221/73/2018-VETMED. DOI
Bordonaro S., Tumino S., Marletta D., De Angelis A., Di Paola F., Avondo M., Valenti B. Effect of GH p.L127V polymorphism and feeding systems on milk production traits and fatty acid composition in Modicana cows. Animals. 2020;10:1651. doi: 10.3390/ani10091651. PubMed DOI PMC
Haruna I.L., Li Y.H., Ekegbu U.J., Amirpour-Najafabadi H., Zhou H.T., Hickford J.G.H. Associations between the bovine myostatin gene and milk fatty acid composition in New Zealand Holstein-Friesian x Jersey-cross cows. Animals. 2020;10:1447. doi: 10.3390/ani10091447. PubMed DOI PMC
Proskura W.S., Liput M., Zaborski D., Sobek Z., Yu Y.H., Cheng Y.H., Dybus A. The effect of polymorphism in the FADS2 gene on the fatty acid composition of bovine milk. Arch. Anim. Breed. 2019;62:547–555. doi: 10.5194/aab-62-547-2019. PubMed DOI PMC
Shi L., Liu L., Lv X., Ma Z., Li C., Li Y., Zhao F., Sun D., Han B. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. Anim. Genet. 2020;51:491–501. doi: 10.1111/age.12936. PubMed DOI
Azis R., Jakaria, Anggraeni A., Gunawan A. Acetyl-CoA carboxylase alpha gene polymorphism and its association with milk fatty acid of Holstein Friesian using real-time PCR method. Trop. Anim. Sci. J. 2020;43:306–313. doi: 10.5398/tasj.2020.43.4.306. DOI
Polasik D., Golinczak J., Proskura W., Terman A., Dybus A. Association between THRSP gene polymorphism and fatty acid composition in milk of dairy cows. Animals. 2021;11:1144. doi: 10.3390/ani11041144. PubMed DOI PMC
Shi L.J., Wu X., Yang Y.Z., Ma Z., Lv X.Q., Liu L., Li Y.H., Zhao F., Han B., Sun D.X. A post-GWAS confirming the genetic effects and functional polymorphisms of AGPAT3 gene on milk fatty acids in dairy cattle. J. Anim. Sci. Biotechnol. 2021;12:24. doi: 10.1186/s40104-020-00540-4. PubMed DOI PMC
Čítek J., Hanusová L., Brzáková M., Večerek L., Panicke L., Lískovcová L. Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in German Holstein sires. Czech J. Anim. Sci. 2018;63:167–173. doi: 10.17221/8/2017-CJAS. DOI
Kuehn C., Edel C., Weikard R., Thaller G. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGATI) gene on milk production traits in German Holstein cows. BMC Genet. 2007;8:62. doi: 10.1186/1471-2156-8-62. PubMed DOI PMC
Carvajal A.M., Huircan P., Dezamour J.M., Subiabre I., Kerr B., Morales R., Ungerfeld E.M. Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genet. Mol. Res. 2016;15:15027057. doi: 10.4238/gmr.15027057. PubMed DOI
Inostroza K.B., Scheuermann E.S., Sepulveda N.A. Stearoyl CoA desaturase and fatty acid synthase gene polymorphisms and milk fatty acid composition in Chilean Black Friesian cows. Rev. Colomb. Cienc. Pec. 2013;26:263–269.
Samková E., Špička J., Hanuš O., Roubal P., Pecová L., Hasoňová L., Smetana P., Klimešová M., Čítek J. Comparison of fatty acid proportions determined by mid-infrared spectroscopy and gas chromatography in bulk and individual milk samples. Animals. 2020;10:1095. doi: 10.3390/ani10061095. PubMed DOI PMC
Kuhn C., Thaller G., Winter A., Bininda-Emonds O.R.P., Kaupe B., Erhardt G., Bennewitz J., Schwerin M., Fries R. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative tip trait locus with major effect on milk fat content in cattle. Genetics. 2004;167:1873–1881. doi: 10.1534/genetics.103.022749. PubMed DOI PMC
Buchanan F.C., Fitzsimmons C.J., Van Kessel A.G., Thue T.D., Winkelman-Sim D.C., Schmutz S.M. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 2002;34:105–116. doi: 10.1186/1297-9686-34-1-105. PubMed DOI PMC
Roy R., Ordovas L., Zaragoza P., Romero A., Moreno C., Altarriba J., Rodellar C. Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 2006;37:215–218. doi: 10.1111/j.1365-2052.2006.01434.x. PubMed DOI
Littlejohn M.D., Tiplady K., Lopdell T., Law T.A., Scott A., Harland C., Sherlock R., Henty K., Obolonkin V., Lehnert K., et al. Expression variants of the lipogenic AGPAT6 gene affect diverse milk composition phenotypes in Bos taurus. PLoS ONE. 2014;9:e85757. doi: 10.1371/journal.pone.0085757. PubMed DOI PMC
SAS Institute Inc. Base SAS 9.4 Procedures Guide: Statistical Procedures. Statistical Analysis System Institute Inc.; Cary, NC, USA: 2013.
Rychtářová J., Sztankoova Z., Kyselová J., Zink V., Štípková M., Vacek M., Štolc L. Effect of DGAT1, BTN1A1, OLR1, and STAT1 genes on milk production and reproduction traits in the Czech Fleckvieh breed. Czech J. Anim. Sci. 2014;59:45–53. doi: 10.17221/7228-CJAS. DOI
Bouwman A.C., Bovenhuis H., Visker M.H.P.W., van Arendonk J.A.M. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;12:43. doi: 10.1186/1471-2156-12-43. PubMed DOI PMC
Houaga I., Muigai A.W.T., Nganga F.M., Ibeagha-Awemu E.M., Kyallo M., Youssao I.A.K., Stomeo F. Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol. Biol. Rep. 2018;45:1849–1862. doi: 10.1007/s11033-018-4331-4. PubMed DOI PMC
Nafikov R.A., Schoonmaker J.P., Korn K.T., Noack K., Garrick D.J., Koehler K.J., Minick-Bormann J., Reecy J.M., Spurlock D.E., Beitz D.C. Polymorphisms in lipogenic genes and milk fatty acid composition in Holstein dairy cattle. Genomics. 2014;104:572–581. doi: 10.1016/j.ygeno.2014.10.001. PubMed DOI
Wang X.L., Wurmser C., Pausch H., Jung S., Reinhardt F., Tetens J., Thaller G., Fries R. Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS ONE. 2012;7:e40711. doi: 10.1371/journal.pone.0040711. PubMed DOI PMC
Bär C., Sutter M., Kopp C., Neuhaus P., Portmann R., Egger L., Reidy B., Bisig W. Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk. Int. Dairy J. 2020;109:104785. doi: 10.1016/j.idairyj.2020.104785. DOI
Liu G.F., Yu X., Li S.L., Shao W., Zhang N. Effects of dietary microalgae (Schizochytrium spp.) supplement on milk performance, blood parameters, and milk fatty acid composition in dairy cows. Czech J. Anim. Sci. 2020;65:162–171. doi: 10.17221/19/2020-CJAS. DOI
Renna M., Ferlay A., Lussiana C., Bany D., Graulet B., Wyss U., Enri S.R., Battaglini L.M., Coppa M. Relative hierarchy of farming practices affecting the fatty acid composition of permanent grasslands and of the derived bulk milk. Anim. Feed Sci. Tech. 2020;267:114561. doi: 10.1016/j.anifeedsci.2020.114561. DOI
van den Oever S.P., Haselmann A., Schreiner M., Fuerst-Waltl B., Zebeli Q., Mayer H.K., Knaus W. Hay versus silage: Does hay feeding positively affect milk composition? Int. Dairy J. 2021;118:105024. doi: 10.1016/j.idairyj.2021.105024. DOI
Haselmann A., Wenter M., Fuerst-Waltl B., Zollitsch W., Zebeli Q., Knaus W. Comparing the effects of silage and hay from similar parent grass forages on organic dairy cows’ feeding behavior, feed intake and performance. Anim. Feed Sci. Tech. 2020;267:114560. doi: 10.1016/j.anifeedsci.2020.114560. DOI
Stergiadis S., Berlitz C.B., Hunt B., Garg S., Givens D.I., Kliem K.E. An update to the fatty acid profiles of bovine retail milk in the United Kingdom: Implications for nutrition in different age and gender groups. Food Chem. 2019;276:218–230. doi: 10.1016/j.foodchem.2018.09.165. PubMed DOI
Młynek K., Danielewicz A., Straczek I. The effect of energy metabolism up to the peak of lactation on the main fractions of fatty acids in the milk of selected dairy cow breeds. Animals. 2021;11:112. doi: 10.3390/ani11010112. PubMed DOI PMC
Nogalski Z., Wroński M., Sobczuk-Szul M., Mochol M., Pogorzelska P. The effect of body energy reserve mobilization on the fatty acid profile of milk in high-yielding cows. Asian Australas. J. Anim. Sci. 2012;25:1712–1720. doi: 10.5713/ajas.2012.12279. PubMed DOI PMC
Stoop W.M., Bovenhuis H., Heck J.M.L., van Arendonk J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009;92:1469–1478. doi: 10.3168/jds.2008-1468. PubMed DOI
Nantapo C.T.W., Muchenje V., Hugo A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian x Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014;146:127–133. doi: 10.1016/j.foodchem.2013.09.009. PubMed DOI
Chilliard Y., Ferlay A., Mansbridge R.M., Doreau M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000;49:181–205. doi: 10.1051/animres:2000117. DOI
Stergiadis S., Cabeza-Luna I., Mora-Ortiz M., Stewart R.D., Dewhurst R.J., Humphries D.J., Watson M., Roehe R., Auffret M.D. Unravelling the role of rumen microbial communities, genes, and activities on milk fatty acid profile using a combination of omics approaches. Front. Microbiol. 2021;11:590441. doi: 10.3389/fmicb.2020.590441. PubMed DOI PMC