Comparison of Fatty Acid Proportions Determined by Mid-Infrared Spectroscopy and Gas Chromatography in Bulk and Individual Milk Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1510336
Národní Agentura pro Zemědělský Výzkum
RO1420
Ministerstvo Zemědělství
GAJU 028/2019/Z
Grantová agentura Jihočeské univerzity
PubMed
32630413
PubMed Central
PMC7341201
DOI
10.3390/ani10061095
PII: ani10061095
Knihovny.cz E-zdroje
- Klíčová slova
- Czech Fleckvieh, Holstein, correlation coefficient, dairy cow, fatty acids, gas chromatography, mid-infrared spectroscopy, raw milk, regression analysis,
- Publikační typ
- časopisecké články MeSH
Rapid analytical methods can contribute to the expansion of milk fatty acid determination for various important practical purposes. The reliability of data resulting from these routine methods plays a crucial role. Bulk and individual milk samples (60 and 345, respectively) were obtained from Czech Fleckvieh and Holstein dairy cows in the Czech Republic. The correlation between milk fatty acid (FA) proportions determined by the routine method (infrared spectroscopy in the mid-region in connection with Fourier transformation; FT-MIR) and the reference method (gas chromatography; GC) was evaluated. To validate the calibration of the FT-MIR method, a linear regression model was used. For bulk milk samples, the correlation coefficients between these methods were higher for the saturated (SFAs) and unsaturated FAs (UFAs) (r = 0.7169 and 0.9232; p < 0.001) than for the trans isomers of UFAs (TFAs) and polyunsaturated FAs (PUFAs) (r = 0.5706 and 0.6278; p < 0.001). Similar results were found for individual milk samples: r = 0.8592 and 0.8666 (p < 0.001) for SFAs and UFAs, 0.1690 (p < 0.01) for TFAs, and 0.3314 (p < 0.001) for PUFAs. The correlation coefficients for TFAs and PUFAs were statistically significant but too low for practical analytical application. The results indicate that the FT-MIR method can be used for routine determination mainly for SFAs and UFAs.
Zobrazit více v PubMed
Hanuš O., Samková E., Křížová L., Hasoňová L., Kala R. Role of fatty acids in milk fat and the influence of selected factors on their variability-A review. Molecules. 2018;23:1636. doi: 10.3390/molecules23071636. PubMed DOI PMC
Biggs D.A. Instrumental infrared estimation of fat, protein, and lactose in milk—collaborative study. J. Assoc. Off. Anal. Chem. 1978;61:1015–1034. doi: 10.1093/jaoac/61.5.1015. PubMed DOI
Soyeurt H., Dardenne P., Dehareng F., Lognay G., Veselko D., Marlier M., Bertozzi C., Mayeres P., Gengler N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006;89:3690–3695. doi: 10.3168/jds.S0022-0302(06)72409-2. PubMed DOI
Šustová K., Růžičková J., Kuchtík J. Application of FT near spectroscopy for determination of true protein and casein in milk. Czech J. Anim. Sci. 2007;52:284–291. doi: 10.17221/2264-CJAS. DOI
van Knegsel A.T.M., van der Drift S.G.A., Horneman M., de Roos A.P.W., Kemp B., Graat E.A.M. Short communication: Ketone body concentration in milk determined by Fourier transform infrared spectroscopy: Value for the detection of hyperketonemia in dairy cows. J. Dairy Sci. 2010;93:3065–3069. doi: 10.3168/jds.2009-2847. PubMed DOI
Coppa M., Revello-Chion A., Giaccone D., Ferlay A., Tabacco E., Borreani G. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chem. 2014;150:49–57. doi: 10.1016/j.foodchem.2013.10.087. PubMed DOI
Hanuš O., Říha J., Samková E., Ledvina D., Chládek G., Kučera J., Roubal P., Jedelská R., Kopecký J. A comparison of result reliability for investigation of milk composition by alternative analytical methods in Czech Republic. Acta Univ. Agric. et Silvic. Mendel. Brun. 2014;62:929–937. doi: 10.11118/actaun201462050929. DOI
Mlček J., Dvořák L., Šustová K., Szwedziak K. Accuracy of the FT-NIR method in evaluating the fat content of milk using calibration models developed for the reference methods according to Rose-Gottlieb and Gerber. J. AOAC Int. 2016;99:1305–1309. doi: 10.5740/jaoacint.16-0107. PubMed DOI
Franzoi M., Niero G., Visentin G., Penasa M., Cassandro M., De Marchi M. Variation of detailed protein composition of cow milk predicted from a large database of mid-infrared spectra. Animals. 2019;9:176. doi: 10.3390/ani9040176. PubMed DOI PMC
Hanuš O., Hering P., Frelich J., Jílek M., Genčurová V., Jedelská R. Reliability of results of milk urea analysis by various methods using artificial milk control samples. Czech J. Anim. Sci. 2008;53:152–161. doi: 10.17221/376-CJAS. DOI
Hanuš O., Hulová I., Genčurová V., Štolc L., Kučera J., Kopecký J., Jedelská R., Motyčka Z. Result interpretation of experimental calibration for milk citric acid determination via infra-red spectroscopy (MIR-FT). [In Czech] Acta Univ. Agric. et Silvic. Mendel. Brun. 2009;57:87–101. doi: 10.11118/actaun200957050087. DOI
van der Drift S.G.A., Jorritsma R., Schonewille J.T., Knijn H.M., Stegeman J.A. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of beta-hydroxybutyrate and acetone in milk in combination with test-day information. J. Dairy Sci. 2012;95:4886–4898. doi: 10.3168/jds.2011-4417. PubMed DOI
Hanuš O., Samková E., Říha J., Vyletělová-Klimešová M., Roubal P. Evaluation of development in indirect determination of milk fat free fatty acids in Czech Republic. Acta Univ. Agric. et Silvic. Mendel. Brun. 2013;61:1669–1679. doi: 10.11118/actaun201361061669. DOI
Grelet C., Bastin C., Gele M., Daviere J.B., Johan M., Werner A., Reding R., Pierna J.A.F., Colinet F.G., Dardenne P., et al. Development of Fourier transform mid-infrared calibrations to predict acetone, beta-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016;99:4816–4825. doi: 10.3168/jds.2015-10477. PubMed DOI
Coppa M., Ferlay A., Leroux C., Jestin M., Chilliard Y., Martin B., Andueza D. Prediction of milk fatty acid composition by near infrared reflectance spectroscopy. Int. Dairy J. 2010;20:182–189. doi: 10.1016/j.idairyj.2009.11.003. DOI
Maurice-Van Eijndhoven M.H.T., Soyeurt H., Dehareng F., Calus M.P.L. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds. Animal. 2013;7:348–354. doi: 10.1017/S1751731112001218. PubMed DOI
Wojciechowski K.L., Barbano D.M. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis. J. Dairy Sci. 2016;99:8561–8570. doi: 10.3168/jds.2016-11248. PubMed DOI
de Roos A.P.W., van den Bijgaart H.J.C.M., Horlyk J., de Jong G. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. J. Dairy Sci. 2007;90:1761–1766. doi: 10.3168/jds.2006-203. PubMed DOI
Coppa M., Ferlay A., Chassaing C., Agabriel C., Glasser F., Chilliard Y., Borreani G., Barcarolo R., Baars T., Kusche D., et al. Prediction of bulk milk fatty acid composition based on farming practices collected through on-farm surveys. J. Dairy Sci. 2013;96:4197–4211. doi: 10.3168/jds.2012-6379. PubMed DOI
Luke T., Russo V., Rochfort S., Wales B., Pryce J. Mid-infrared spectroscopy of milk as a tool to predict subacute ruminal acidosis. J. Anim. Sci. 2018;96:502. doi: 10.1093/jas/sky404.1096. DOI
Müller U., Kesser J., Koch C., Helfrich H.-P., Rietz C. Monitoring predictive and informative indicators of the energy status of dairy cows during early lactation in the context of monthly milk recordings using mid-infrared spectroscopy. Livest. Sci. 2019;221:6–14. doi: 10.1016/j.livsci.2018.12.020. DOI
Visentin G., Penasa M., Niero G., Cassandro M., De Marchi M. Phenotypic characterisation of major mineral composition predicted by mid-infrared spectroscopy in cow milk. Ital. J. Anim. Sci. 2018;17:549–556. doi: 10.1080/1828051X.2017.1398055. DOI
Jensen R.G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 2002;85:295–350. doi: 10.3168/jds.S0022-0302(02)74079-4. PubMed DOI
Barłowska J., Szwajkowska M., Litwińczuk Z., Król J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011;10:291–302. doi: 10.1111/j.1541-4337.2011.00163.x. DOI
Gómez-Cortés P., Juárez M., de la Fuente M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018;81:1–9. doi: 10.1016/j.tifs.2018.08.014. DOI
Bittante G., Cipolat-Gotet C. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra. J. Dairy Sci. 2018;101:7219–7235. doi: 10.3168/jds.2017-14289. PubMed DOI
Caredda M., Addis M., Ibba I., Leardi R., Scintu M.F., Piredda G., Sanna G. Building of prediction models by using Mid-Infrared spectroscopy and fatty acid profile to discriminate the geographical origin of sheep milk. Lwt-Food Sci. Technol. 2017;75:131–136. doi: 10.1016/j.lwt.2016.08.053. DOI
Coppa M., Revello-Chion A., Giaccone D., Tabacco E., Borreani G. Could predicting fatty acid profile by mid-infrared reflectance spectroscopy be used as a method to increase the value added by milk production chains? J. Dairy Sci. 2017;100:8705–8721. doi: 10.3168/jds.2016-12382. PubMed DOI
Ducháček J., Stádník L., Ptáček M., Beran J., Okrouhlá M., Gašparík M. Negative energy balance influences nutritional quality of milk from Czech Fleckvieh cows due changes in proportion of fatty acids. Animals. 2020;10:563. doi: 10.3390/ani10040563. PubMed DOI PMC
Tsenkova R., Atanassova S., Toyoda K., Ozaki Y., Itoh K., Fearn T. Near-infrared spectroscopy for dairy management: Measurement of unhomogenized milk composition. J. Dairy Sci. 1999;82:2344–2351. doi: 10.3168/jds.S0022-0302(99)75484-6. PubMed DOI
Mlček J., Šustová K., Rop O., Juríkova T., Humpolíček P., Balla S. Rapid assessment of selected free amino acids during Edam cheese ripening by near infrared spectroscopy. Acta Vet. Brno. 2013;82:191–196. doi: 10.2754/avb201382020191. DOI
Soyeurt H., Dehareng F., Gengler N., McParland S., Wall E., Berry D.P., Coffey M., Dardenne P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011;94:1657–1667. doi: 10.3168/jds.2010-3408. PubMed DOI
Ferrand-Calmels M., Palhiere I., Brochard M., Leray O., Astruc J.M., Aurel M.R., Barbey S., Bouvier F., Brunschwig P., Caillatt H., et al. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry. J. Dairy Sci. 2014;97:17–35. doi: 10.3168/jds.2013-6648. PubMed DOI
Mlček J., Rop O., Dohnal V.K.Š. Application of near infrared spectroscopy to estimate selected free amino acids and soluble nitrogen during cheese ripening. Acta Vet. Brno. 2011;80:293–297. doi: 10.2754/avb201180030293. DOI
Dvořák L., Mlček J., Šustová K. Comparison of FT-NIR Spectroscopy and ELISA for Detection of Adulteration of Goat Cheeses with Cow’s Milk. J. AOAC Int. 2016;99:180–186. doi: 10.5740/jaoacint.15-0190. PubMed DOI
Kawasaki M., Kawamura S., Tsukahara M., Morita S., Komiya M., Natsuga M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Comput. Electron. Agric. 2008;63:22–27. doi: 10.1016/j.compag.2008.01.006. DOI
Pecová L., Hanuš O., Hasoňová L., Samková E., Stádník L., Kučera J., Trávníček J., Roubal P., Klimešová M., Kopecký J., et al. Evaluation of the Result Reliability of Basic Milk Composition in an Automated Milking System through Indirect Real-Time Analysis; Proceedings of the 24th International Phd Students Conference (Mendelnet 2017); Brno, Czech. 8–9 November 2017.
Poulsen N.A., Hein L., Kargo M., Buitenhuis A.J. Realization of breeding values for milk fatty acids in relation to seasonal variation in organic milk. J. Dairy Sci. 2020;103:2434–2441. doi: 10.3168/jds.2019-17065. PubMed DOI
Tiplady K.M., Lopdell T.J., Littlejohn M.D., Garrick D.J. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J. Anim. Sci. Biotechnol. 2020;11 doi: 10.1186/s40104-020-00445-2. PubMed DOI PMC
Institute C.S. Milk–Definition and Evaluation of the Overall Accuracy of Alternative Methods of Milk Analysis–Part 1: Analytical Attributes of Alternative Methods. Czech Standards Institute; Prague, Czech Republic: 2016. ČSN ISO 8196-1 (570536)
Institute C.S. Milk–Definition and Evaluation of the Overall Accuracy of Alternative Methods of Milk Analysis–Part 2: Calibration and Quality Control in the Dairy Laboratory. Czech Standards Institute; Prague, Czech Republic: 2016. ČSN ISO 8196-2 (570536)
Institute C.S. Milk–Definition and Evaluation of the Overall Accuracy of Alternative Methods of Milk Analysis–Part 3: Protocol for the Evaluation and Validation of Alternative Quantitative Methods of Milk Analysis. Czech Standards Institute; Prague, Czech Republic: 2016. ČSN ISO 8196-3 (570536)
FOSS . Application Note 64: MilkoscanTM FT+ Fatty Acid Prediction Models. FOSS; Hillerød, Danmark: 2011.
FIL-IDF . New Applications of Mid Infra-Red Spectrometry for the Analysis of Milk and Milk Products. FIL-IDF; Brussels, Belgium: 2010. Bulletin of the IDF N° 447/2010.
Hanuš O., Frelich J., Janů L., Macek A., Zajíčková I., Genčurová V., Jedelská R. Impact of different milk yields of cows on milk quality in Bohemian Spotted cattle. Acta Vet. Brno. 2007;76:563–571. doi: 10.2754/avb200776040563. DOI
Janů L., Hanuš O., Frelich J., Macek A., Zajíčková I., Genčurová V., Jedelská R. Influences of different milk yields of Holstein cows on milk quality indicators in the Czech Republic. Acta Vet. Brno. 2007;76:553–561. doi: 10.2754/avb200776040553. DOI
Precht D., Molkentin J. Frequency distributions of conjugated linoleic acid and trans fatty acid contents in European bovine milk fats. Milchwissenschaft. 2000;55:687–691.
Parodi P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004;59:3–59.
Couvreur S., Hurtaud C., Lopez C., Delaby L., Peyraud J.L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006;89:1956–1969. doi: 10.3168/jds.S0022-0302(06)72263-9. PubMed DOI
Ellis K.A., Innocent G., Grove-White D., Cripps P., McLean W.G., Howard C.V., Mihm M. Comparing the fatty acid composition of organic and conventional milk. J. Dairy Sci. 2006;89:1938–1950. doi: 10.3168/jds.S0022-0302(06)72261-5. PubMed DOI
Pešek M., Samková E., Špička J. Fatty acids and composition of their important groups in milk fat of Czech Pied cattle. Czech J. Anim. Sci. 2006;51:181–188. doi: 10.17221/3927-CJAS. DOI
Jenkins T.C., McGuire M.A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006;89:1302–1310. doi: 10.3168/jds.S0022-0302(06)72198-1. PubMed DOI