Non-relativistic torque and Edelstein effect in non-collinear magnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-21974S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
2022-CRG10-4660
KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST)
202010042199
National University of Colombia | Dirección de Investigación, Universidad Nacional de Colombia (Division of Investigations of the National University of Colombia)
PubMed
39227571
PubMed Central
PMC11372084
DOI
10.1038/s41467-024-51565-6
PII: 10.1038/s41467-024-51565-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The Edelstein effect is the origin of the spin-orbit torque: a current-induced torque that is used for the electrical control of ferromagnetic and antiferromagnetic materials. This effect originates from the relativistic spin-orbit coupling, which necessitates utilizing materials with heavy elements. Here, we show that in magnetic materials with non-collinear magnetic order, the Edelstein effect and, consequently, a current-induced torque can exist even in the absence of the spin-orbit coupling. Using group symmetry analysis, model calculations, and realistic simulations on selected compounds, we identify large classes of non-collinear magnet candidates and demonstrate that the current-driven torque is of similar magnitude as the celebrated spin-orbit torque in conventional transition metal structures. We also show that this torque can exist in an insulating material, which could allow for highly efficient electrical control of magnetic order.
Aix Marseille Université CNRS CINaM Marseille France
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Zobrazit více v PubMed
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys.82, 1539 (2010).10.1103/RevModPhys.82.1539 DOI
Ritzinger, P. & Výborný, K. Anisotropic magnetoresistance: materials, models and applications. R. Soc. Open Sci.10, 230564 (2023). 10.1098/rsos.230564 PubMed DOI PMC
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effect. Rev. Mod. Phys.87, 1213 (2015).10.1103/RevModPhys.87.1213 DOI
Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Spin-orbit coupling induced emergent phenomena at surfaces and interfaces. Nature539, 509 (2016). 10.1038/nature19820 PubMed DOI
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys.91, 035004 (2019).10.1103/RevModPhys.91.035004 DOI
Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic energy-driven inversion symmetry breaking. Nature549, 492 (2017). 10.1038/nature23898 PubMed DOI
Železný, J. et al. Unidirectional magnetoresistance and spin-orbit torque in NiMnSb. Phys. Rev. B104, 054429 (2021).10.1103/PhysRevB.104.054429 DOI
Pekar, S. & Rashba, E. I. Combined resonance in crystals in inhomogeneous magnetic fields. J. Exp. Theor. Phys.20, 1295 (1965).
Ramazashvili, R. Kramers degeneracy in a magnetic field and Zeeman spin-orbit coupling in antiferromagnetic conductors. Phys. Rev. B79, 184432 (2009).10.1103/PhysRevB.79.184432 PubMed DOI
Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett.87, 116801 (2001). 10.1103/PhysRevLett.87.116801 PubMed DOI
Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett.101, 156402 (2008). 10.1103/PhysRevLett.101.156402 PubMed DOI
Ndiaye, P. B., Abbout, A., Goli, V. M. L. D. P. & Manchon, A. Quantum anomalous Hall effect and Anderson-Chern insulating regime in the noncollinear antiferromagnetic 3Q state. Phys. Rev. B100, 144440 (2019).10.1103/PhysRevB.100.144440 DOI
Zhang, Y., Zelezny, J., Sun, Y., Brink, J. V. D. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling. N. J. Phys.20, 073028 (2018).10.1088/1367-2630/aad1eb DOI
Zelezný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett.119, 187204 (2017). 10.1103/PhysRevLett.119.187204 PubMed DOI
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature565, 627 (2019). 10.1038/s41586-018-0853-0 PubMed DOI
Vasko, F. T. Spin splitting in the spectrum of two-dimensional electrons due to the surface potential. JETP Lett.30, 541 (1979).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun.73, 233 (1990).10.1016/0038-1098(90)90963-C DOI
Aronov, A. G. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field. JETP Lett.50, 398 (1989).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X12, 040501 (2022).
López-Moreno, S., Romero, A. H., Mejía-López, J., Muñoz, A. & Roshchin, I. V. First-principles study of electronic, vibrational, elastic, and magnetic properties of FeF2 as a function of pressure. Phys. Rev. B85, 134110 (2012).10.1103/PhysRevB.85.134110 DOI
Noda, Y., Ohno, K. & Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation. Phys. Chem. Chem. Phys.18, 13294–13303 (2016). 10.1039/C5CP07806G PubMed DOI
Okugawa, T., Ohno, K., Noda, Y. & Nakamura, S. Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3 (M = Cr, Mn, Fe). J. Phys. Condens. Matter30, 075502 (2018). 10.1088/1361-648X/aa9e70 PubMed DOI
Šmejkal, L., González-hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv.6, eaaz8809 (2020). 10.1126/sciadv.aaz8809 PubMed DOI PMC
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun.10, 4305 (2019). 10.1038/s41467-019-12229-y PubMed DOI PMC
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn.88, 123702 (2019).10.7566/JPSJ.88.123702 DOI
Ahn, K.-h, Hariki, A., Lee, K.-w & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B99, 184432 (2019).10.1103/PhysRevB.99.184432 DOI
Yuan, L.-D., Wang, Z., Luo, J.-w, Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B102, 014422 (2020).10.1103/PhysRevB.102.014422 DOI
González-Hernández, R. et al. Efficient electrical spin-splitter based on non-relativistic collinear antiferromagnetism. Phys. Rev. Lett.126, 127701 (2021). 10.1103/PhysRevLett.126.127701 PubMed DOI
Yuan, L.-D., Wang, Z., Luo, J. W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater.5, 014409 (2021).10.1103/PhysRevMaterials.5.014409 DOI
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X12, 031042 (2022).
Egorov, S. A., Litvin, D. B. & Evarestov, R. A. Antiferromagnetism-induced spin splitting in systems described by magnetic layer groups. J. Phys. Chem. C125, 16147 (2021).10.1021/acs.jpcc.1c02653 DOI
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X12, 011028 (2022).
Ghosh, S., Manchon, A. & Železný, J. Unconventional robust spin-transfer torque in noncollinear antiferromagnetic junctions. Phys. Rev. Lett.128, 097702 (2022). 10.1103/PhysRevLett.128.097702 PubMed DOI
Hayami, S., Yanagi, Y. & Kusunose, H. Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without spin-orbit coupling. Phys. Rev. B101, 220403 (2020).10.1103/PhysRevB.101.220403 DOI
Hayami, S., Yanagi, Y. & Kusunose, H. Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin-orbit coupling: procedure on the basis of augmented multipoles. Phys. Rev. B102, 144441 (2020).
Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Unconventional p-wave magnets. Preprint at http://arxiv.org/abs/2309.01607 (2023).
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys.4, 642–659 (2022).
Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. A294, 343–358 (1966).
Litvin, D. B. & Opechowski, W. Spin groups. Physica76, 538–554 (1974).10.1016/0031-8914(74)90157-8 DOI
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature626, 517–522 (2024). 10.1038/s41586-023-06907-7 PubMed DOI PMC
Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater.36, 2314076 (2024). PubMed
Železný, J. et al. Spin-orbit torques in locally and globally non-centrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B95, 014403 (2017).10.1103/PhysRevB.95.014403 DOI
Bonbien, V. & Manchon, A. Symmetrized decomposition of the Kubo-Bastin formula. Phys. Rev. B102, 085113 (2020).10.1103/PhysRevB.102.085113 DOI
Kurebayashi, H. et al. An antidamping spin-orbit torque originating from the Berry curvature. Nat. Nanotechnol.9, 211 (2014). 10.1038/nnano.2014.15 PubMed DOI
Li, H. et al. Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets. Phys. Rev. B91, 134402 (2015).10.1103/PhysRevB.91.134402 DOI
Hanke, J.-P., Freimuth, F., Niu, C., Blügel, S. & Mokrousov, Y. Mixed Weyl semimetals and dissipationless magnetization control in insulators. Nat. Commun.8, 1479 (2017). 10.1038/s41467-017-01138-7 PubMed DOI PMC
Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett.113, 157201 (2014). 10.1103/PhysRevLett.113.157201 PubMed DOI
Zhang, X., Liu, Q., Luo, J.-w, Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys.10, 387 (2014).10.1038/nphys2933 DOI
Zhang, Y., Okamoto, S. & Xiao, D. Spin-Nernst effect in the paramagnetic regime of an antiferromagnetic insulator. Phys. Rev. B98, 035424 (2018).10.1103/PhysRevB.98.035424 DOI
Železný, J. Linear response symmetry. Bitbucket https://bitbucket.org/zeleznyj/linear-response-symmetry (2024).
Freimuth, F., Blügel, S. & Mokrousov, Y. Spin-orbit torques in Co/Pt(111) and Mn/W(001) magnetic bilayers from first principles. Phys. Rev. B90, 174423 (2014).10.1103/PhysRevB.90.174423 DOI
Kurz, P., Bihlmayer, G., Hirai, K. & Blügel, S. Three-dimensional spin structure on a two-dimensional lattice: Mn/Cu(111). Phys. Rev. Lett.86, 1106 (2001). 10.1103/PhysRevLett.86.1106 PubMed DOI
Kato, Y., Martin, I. & Batista, C. D. Stability of the spontaneous quantum Hall state in the triangular Kondo-lattice model. Phys. Rev. Lett.105, 266405 (2010). 10.1103/PhysRevLett.105.266405 PubMed DOI
Endoh, Y. & Ishikawa, Y. Antiferromagnetism of γ iron manganes alloys. J. Phys. Soc. Jpn.30, 1614 (1971).10.1143/JPSJ.30.1614 DOI
Gardner, J. S., Gingras, M. J. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys.82, 53 (2010).10.1103/RevModPhys.82.53 DOI
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater.14, 871 (2015). 10.1038/nmat4360 PubMed DOI
Tomiyoshi, S. Polarized neutron diffraction study of the spin structure of Mn3Sn. J. Phys. Soc. Jpn.51, 803–810 (1982).10.1143/JPSJ.51.803 DOI
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature527, 212 (2015). 10.1038/nature15723 PubMed DOI
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature580, 608 (2020). 10.1038/s41586-020-2211-2 PubMed DOI
Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl.18, 024064 (2022).10.1103/PhysRevApplied.18.024064 DOI
Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv.8, eabo5930 (2022). 10.1126/sciadv.abo5930 PubMed DOI PMC
Xie, H. et al. Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current. Nat. Commun.13, 5744 (2022). 10.1038/s41467-022-33345-2 PubMed DOI PMC
Disseler, S. M. et al. Magnetic structure and ordering of multiferroic hexagonal LuFeO3. Phys. Rev. Lett.114, 217602 (2015). 10.1103/PhysRevLett.114.217602 PubMed DOI
Suresh, P. et al. Magnetic ground state of the multiferroic hexagonal LuFeO3. Phys. Rev. B97, 184419 (2018).10.1103/PhysRevB.97.184419 DOI
Das, H., Wysocki, A. L., Geng, Y., Wu, W. & Fennie, C. J. Bulk magnetoelectricity in the hexagonal manganites and ferrites. Nat. Commun.5, 2998 (2014). 10.1038/ncomms3998 PubMed DOI
Garate, I. & Franz, M. Magnetoelectric response of the time-reversal invariant helical metal. Phys. Rev. B81, 172408 (2010).10.1103/PhysRevB.81.172408 DOI
Tang, J. & Cheng, R. Lossless Spin-Orbit Torque in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. Lett. 132, 136701 (2024). PubMed
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B78, 195424 (2008).10.1103/PhysRevB.78.195424 DOI
Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett.112, 017205 (2014). 10.1103/PhysRevLett.112.017205 PubMed DOI
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169–11186 (1996).10.1103/PhysRevB.54.11169 PubMed DOI
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter32, 165902 (2020). 10.1088/1361-648X/ab51ff PubMed DOI
Železný, J. Wannier linear response. Bitbucket https://bitbucket.org/zeleznyj/wannier-linear-response (2024).