An antidamping spin-orbit torque originating from the Berry curvature
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
24584275
DOI
10.1038/nnano.2014.15
PII: nnano.2014.15
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin-orbit torque that stems from the Berry curvature, in analogy to the origin of the intrinsic spin Hall effect. We chose the ferromagnetic semiconductor (Ga,Mn)As as a material system because its crystal inversion asymmetry allows us to measure bare ferromagnetic films, rather than ferromagnetic-paramagnetic heterostructures, eliminating by design any spin Hall effect contribution. We provide an intuitive picture of the Berry curvature origin of this antidamping spin-orbit torque as well as its microscopic modelling. We expect the Berry curvature spin-orbit torque to be of comparable strength to the spin-Hall-effect-driven antidamping torque in ferromagnets interfaced with paramagnets with strong intrinsic spin Hall effect.
Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Science. 2012 May 4;336(6081):555-8 PubMed
Nat Mater. 2010 Mar;9(3):230-4 PubMed
Phys Rev Lett. 2004 Mar 26;92(12):126603 PubMed
Phys Rev Lett. 2012 Mar 16;108(11):117201 PubMed
Phys Rev Lett. 2002 May 20;88(20):207208 PubMed
Science. 2004 Dec 10;306(5703):1910-3 PubMed
Nature. 2005 Nov 17;438(7066):339-42 PubMed
Nat Mater. 2013 Mar;12(3):240-5 PubMed
Phys Rev B Condens Matter. 1996 Oct 1;54(13):9353-9358 PubMed
Phys Rev Lett. 2005 Feb 4;94(4):047204 PubMed
Nature. 2011 Aug 11;476(7359):189-93 PubMed
Science. 2003 Sep 5;301(5638):1348-51 PubMed
Nat Nanotechnol. 2011 May 22;6(7):413-7 PubMed
Nat Mater. 2011 Jun;10(6):419-23 PubMed
Phys Rev Lett. 2012 Aug 31;109(9):096602 PubMed
Nat Nanotechnol. 2013 Aug;8(8):587-93 PubMed
Phys Rev Lett. 2007 Jan 19;98(3):036602 PubMed
Nat Commun. 2013;4:1422 PubMed
Nat Mater. 2012 Apr 23;11(5):372-81 PubMed
Nat Mater. 2012 Apr 23;11(5):382-90 PubMed
Phys Rev B Condens Matter. 1992 Sep 15;46(11):6781-6788 PubMed
Non-relativistic torque and Edelstein effect in non-collinear magnets
Large Damping-Like Spin-Orbit Torque in a 2D Conductive 1T-TaS2 Monolayer
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Interface-Induced Phenomena in Magnetism