Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25823949
DOI
10.1038/ncomms7730
PII: ncomms7730
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently discovered relativistic spin torques induced by a lateral current at a ferromagnet/paramagnet interface are a candidate spintronic technology for a new generation of electrically controlled magnetic memory devices. The focus of our work is to experimentally disentangle the perceived two model physical mechanisms of the relativistic spin torques, one driven by the spin-Hall effect and the other one by the inverse spin-galvanic effect. Here, we show a vector analysis of the torques in a prepared epitaxial transition-metal ferromagnet/semiconductor-paramagnet single-crystal structure by means of the all-electrical ferromagnetic resonance technique. By choice of our structure in which the semiconductor paramagnet has a Dresselhaus crystal inversion asymmetry, the system is favourable for separating the torques due to the inverse spin-galvanic effect and spin-Hall effect mechanisms into the field-like and antidamping-like components, respectively. Since they contribute to distinct symmetry torque components, the two microscopic mechanisms do not compete but complement each other in our system.
Institute of Physics ASCR v v i Cukrovarnicka 10 16253 Praha 6 Czech Republic
PRESTO Japan Science and Technology Agency Kawaguchi 332 0012 Japan
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Nat Nanotechnol. 2014 Mar;9(3):211-7 PubMed
Phys Rev Lett. 2005 Feb 4;94(4):047204 PubMed
Nat Commun. 2013;4:2055 PubMed
Science. 2012 May 4;336(6081):555-8 PubMed
Nature. 2011 Aug 11;476(7359):189-93 PubMed
Nat Nanotechnol. 2013 Aug;8(8):587-93 PubMed
Nat Mater. 2013 Mar;12(3):240-5 PubMed
Nat Mater. 2010 Mar;9(3):230-4 PubMed
Nat Mater. 2014 Oct;13(10):932-7 PubMed
Nat Nanotechnol. 2011 May 22;6(7):413-7 PubMed
Phys Rev Lett. 2004 Oct 22;93(17):176601 PubMed
Phys Rev Lett. 2012 Mar 16;108(11):117201 PubMed
Science. 2004 Dec 10;306(5703):1910-3 PubMed
Nat Mater. 2012 Apr 23;11(5):382-90 PubMed