Electric control of the spin Hall effect by intervalley transitions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25108612
DOI
10.1038/nmat4059
PII: nmat4059
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength--quantified in terms of the SHE angle--is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by means of an electrical intervalley transition induced in the conduction band. The spin Hall angle was determined by measuring an electromotive force driven by photoexcited spin-polarized electrons drifting through GaAs Hall bars. By controlling electron populations in different (Γ and L) valleys, we manipulated the angle from 0.0005 to 0.02. This change by a factor of 40 is unprecedented in GaAs and the highest value achieved is comparable to that of the heavy metal Pt.
Cavendish Laboratory University of Cambridge J J Thomson Avenue Cambridge CB3 0HE UK
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Zobrazit více v PubMed
Nature. 2006 Jul 13;442(7099):176-9 PubMed
Science. 2003 Sep 5;301(5638):1348-51 PubMed
Nat Mater. 2011 Jun 26;10(9):655-9 PubMed
Phys Rev Lett. 2004 Mar 26;92(12):126603 PubMed
Phys Rev Lett. 2011 Mar 25;106(12):126601 PubMed
Phys Rev Lett. 2006 Jan 20;96(2):026602 PubMed
Nat Mater. 2012 Apr 23;11(5):382-90 PubMed
Phys Rev Lett. 2002 Sep 30;89(14):146601 PubMed
Nat Commun. 2012 Jan 17;3:629 PubMed
Science. 2010 Dec 24;330(6012):1801-4 PubMed
Phys Rev Lett. 2012 Sep 7;109(10):106603 PubMed
Phys Rev Lett. 2005 Feb 4;94(4):047204 PubMed
Phys Rev Lett. 2012 Oct 12;109(15):156602 PubMed
Phys Rev Lett. 2007 Apr 13;98(15):156601 PubMed
Science. 2012 May 4;336(6081):555-8 PubMed
Phys Rev B Condens Matter. 1987 Dec 15;36(17):9134-9141 PubMed
Phys Rev Lett. 2005 Oct 14;95(16):166605 PubMed
Science. 2004 Dec 10;306(5703):1910-3 PubMed
Phys Rev Lett. 2010 Oct 8;105(15):156602 PubMed