Large Damping-Like Spin-Orbit Torque in a 2D Conductive 1T-TaS2 Monolayer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32786947
PubMed Central
PMC7496736
DOI
10.1021/acs.nanolett.0c01955
Knihovny.cz E-zdroje
- Klíčová slova
- Damping-like torque, Planar Hall effect, Spin-torque ferromagnetic resonance, Transition-metal dichalcogenide,
- Publikační typ
- časopisecké články MeSH
A damping-like spin-orbit torque (SOT) is a prerequisite for ultralow-power spin logic devices. Here, we report on the damping-like SOT in just one monolayer of the conducting transition-metal dichalcogenide (TMD) TaS2 interfaced with a NiFe (Py) ferromagnetic layer. The charge-spin conversion efficiency is found to be 0.25 ± 0.03 in TaS2(0.88)/Py(7), and the spin Hall conductivity (14.9×105ℏ2eΩ-1m-1) is found to be superior to values reported for other TMDs. We also observed sizable field-like torque in this heterostructure. The origin of this large damping-like SOT can be found in the interfacial properties of the TaS2/Py heterostructure, and the experimental findings are complemented by the results from density functional theory calculations. It is envisioned that the interplay between interfacial spin-orbit coupling and crystal symmetry yielding large damping-like SOT. The dominance of damping-like torque demonstrated in our study provides a promising path for designing the next-generation conducting TMD-based low-powered quantum memory devices.
Departamento de Física Aplicada University of Salamanca Pza de la Merced s n 37008 Salamanca Spain
Department of Materials Science Uppsala University Box 35 SE 751 03 Uppsala Sweden
Zobrazit více v PubMed
Emori S.; Bauer U.; Ahn S.-M.; Martinez E.; Beach G. S. D. Current-Driven Dynamics of Chiral Ferromagnetic Domain Walls. Nat. Mater. 2013, 12, 611–616. 10.1038/nmat3675. PubMed DOI
Safeer C. K.; Jué E.; Lopez A.; Buda-Prejbeanu L.; Auffret S.; Pizzini S.; Boulle O.; Miron I. M.; Gaudin G. Spin-Orbit Torque Magnetization Switching Controlled by Geometry. Nat. Nanotechnol. 2016, 11 (2), 143–146. 10.1038/nnano.2015.252. PubMed DOI
Garello K.; Miron I. M.; Avci C. O.; Freimuth F.; Mokrousov Y.; Blügel S.; Auffret S.; Boulle O.; Gaudin G.; Gambardella P. Symmetry and Magnitude of Spin-Orbit Torques in Ferromagnetic Heterostructures. Nat. Nanotechnol. 2013, 8 (8), 587–593. 10.1038/nnano.2013.145. PubMed DOI
Chen T.; Dumas R. K.; Eklund A.; Muduli P. K.; Houshang A.; Awad A. A.; Dürrenfeld P.; Malm B. G.; Rusu A.; Akerman J. Spin-Torque and Spin-Hall Nano-Oscillators. Proc. IEEE 2016, 104 (10), 1919–1945. 10.1109/JPROC.2016.2554518. DOI
Kim J.; Sinha J.; Hayashi M.; Yamanouchi M.; Fukami S.; Suzuki T.; Mitani S.; Ohno H. Layer Thickness Dependence of the Current-Induced Effective Field Vector in Ta|CoFeB|MgO. Nat. Mater. 2013, 12 (3), 240–245. 10.1038/nmat3522. PubMed DOI
Zhang W.; Han W.; Jiang X.; Yang S.-H.; S. P. Parkin S. Role of Transparency of Platinum–Ferromagnet Interfaces in Determining the Intrinsic Magnitude of the Spin Hall Effect. Nat. Phys. 2015, 11 (6), 496–502. 10.1038/nphys3304. DOI
Kurebayashi H.; Sinova J.; Fang D.; Irvine A. C.; Skinner T. D.; Wunderlich J.; Novák V.; Campion R. P.; Gallagher B. L.; Vehstedt E. K.; et al. An Antidamping Spin-Orbit Torque Originating from the Berry Curvature. Nat. Nanotechnol. 2014, 9 (3), 211–217. 10.1038/nnano.2014.15. PubMed DOI
Manchon A.; Železný J.; Miron I. M.; Jungwirth T.; Sinova J.; Thiaville A.; Garello K.; Gambardella P. Current-Induced Spin-Orbit Torques in Ferromagnetic and Antiferromagnetic Systems. Rev. Mod. Phys. 2019, 91, 035004.10.1103/RevModPhys.91.035004. DOI
Mahfouzi F.; Mishra R.; Chang P. H.; Yang H.; Kioussis N. Microscopic Origin of Spin-Orbit Torque in Ferromagnetic Heterostructures: A First-Principles Approach. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 101 (6), 060405(R)10.1103/PhysRevB.101.060405. DOI
Berger A. J.; Edwards E. R. J.; Nembach H. T.; Karis O.; Weiler M.; Silva T. J. Determination of the Spin Hall Effect and the Spin Diffusion Length of Pt from Self-Consistent Fitting of Damping Enhancement and Inverse Spin-Orbit Torque Measurements. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 98 (2), 024402.10.1103/PhysRevB.98.024402. DOI
Mellnik A. R.; Lee J. S.; Richardella A.; Grab J. L.; Mintun P. J.; Fischer M. H.; Vaezi A.; Manchon A.; Kim E. A.; Samarth N.; et al. Spin-Transfer Torque Generated by a Topological Insulator. Nature 2014, 511 (7510), 449–451. 10.1038/nature13534. PubMed DOI
Khang N. H. D.; Ueda Y.; Hai P. N. A Conductive Topological Insulator with Large Spin Hall Effect for Ultralow Power Spin–Orbit Torque Switching. Nat. Mater. 2018, 17 (9), 808–813. 10.1038/s41563-018-0137-y. PubMed DOI
Li P.; Kally J.; Zhang S. S. L.; Pillsbury T.; Ding J.; Csaba G.; Ding J.; Jiang J. S.; Liu Y.; Sinclair R.; et al. Magnetization Switching Using Topological Surface States. Sci. Adv. 2019, 5 (8), eaaw341510.1126/sciadv.aaw3415. PubMed DOI PMC
Pai C. F. Switching by Topological Insulators. Nat. Mater. 2018, 17 (9), 755–757. 10.1038/s41563-018-0146-x. PubMed DOI
Feng Y. P.; Shen L.; Yang M.; Wang A.; Zeng M.; Wu Q.; Chintalapati S.; Chang C. R. Prospects of Spintronics Based on 2D Materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1313.10.1002/wcms.1313. DOI
Husain S.; Kumar A.; Kumar P.; Kumar A.; Barwal V.; Behera N.; Choudhary S.; Svedlindh P.; Chaudhary S. Spin Pumping in the Heusler Alloy C O2FeAl/Mo S2 Heterostructure: Ferromagnetic Resonance Experiment and Theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 98 (18), 180404(R)10.1103/PhysRevB.98.180404. DOI
Guimarães M. H. D.; Stiehl G. M.; MacNeill D.; Reynolds N. D.; Ralph D. C. Spin-Orbit Torques in NbSe2/Permalloy Bilayers. Nano Lett. 2018, 18 (2), 1311–1316. 10.1021/acs.nanolett.7b04993. PubMed DOI
Lv W.; Jia Z.; Wang B.; Lu Y.; Luo X.; Zhang B.; Zeng Z.; Liu Z. Electric-Field Control of Spin-Orbit Torques in WS2/Permalloy Bilayers. ACS Appl. Mater. Interfaces 2018, 10 (3), 2843–2849. 10.1021/acsami.7b16919. PubMed DOI
Shao Q.; Yu G.; Lan Y. W.; Shi Y.; Li M. Y.; Zheng C.; Zhu X.; Li L. J.; Amiri P. K.; Wang K. L. Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. Nano Lett. 2016, 16 (12), 7514–7520. 10.1021/acs.nanolett.6b03300. PubMed DOI
Shi S.; Liang S.; Zhu Z.; Cai K.; Pollard S. D.; Wang Y.; Wang J.; Wang Q.; He P.; Yu J.; et al. All-Electric Magnetization Switching and Dzyaloshinskii–Moriya Interaction in WTe2/Ferromagnet Heterostructures. Nat. Nanotechnol. 2019, 14 (10), 945–949. 10.1038/s41565-019-0525-8. PubMed DOI
You J.; Hossain M. D.; Luo Z. Synthesis of 2D Transition Metal Dichalcogenides by Chemical Vapor Deposition with Controlled Layer Number and Morphology. Nano Converg 2018, 5 (1), 26.10.1186/s40580-018-0158-x. PubMed DOI PMC
Yun S. J.; Chae S. H.; Kim H.; Park J. C.; Park J. H.; Han G. H.; Lee J. S.; Kim S. M.; Oh H. M.; Seok J.; et al. Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano 2015, 9 (5), 5510–5519. 10.1021/acsnano.5b01529. PubMed DOI
Sanders C. E.; Dendzik M.; Ngankeu A. S.; Eich A.; Bruix A.; Bianchi M.; Miwa J. A.; Hammer B.; Khajetoorians A. A.; Hofmann P. Crystalline and Electronic Structure of Single-Layer TaS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (8), 1–5. 10.1103/PhysRevB.94.081404. DOI
Wang X.; Liu H.; Wu J.; Lin J.; He W.; Wang H.; Shi X.; Suenaga K.; Xie L. Chemical Growth of 1T-TaS 2 Monolayer and Thin Films: Robust Charge Density Wave Transitions and High Bolometric Responsivity. Adv. Mater. 2018, 30 (38), 1800074.10.1002/adma.201800074. PubMed DOI
Navarro-Moratalla E.; Island J. O.; Manãs-Valero S.; Pinilla-Cienfuegos E.; Castellanos-Gomez A.; Quereda J.; Rubio-Bollinger G.; Chirolli L.; Silva-Guillén J. A.; Agraït N.; et al. Enhanced Superconductivity in Atomically Thin TaS 2. Nat. Commun. 2016, 7, 11043.10.1038/ncomms11043. PubMed DOI PMC
Fu W.; Chen Y.; Lin J.; Wang X.; Zeng Q.; Zhou J.; Zheng L.; Wang H.; He Y.; He H.; et al. Controlled Synthesis of Atomically Thin 1T-TaS2 for Tunable Charge Density Wave Phase Transitions. Chem. Mater. 2016, 28 (21), 7613–7618. 10.1021/acs.chemmater.6b02334. DOI
Wu R. J.; Udyavara S.; Ma R.; Wang Y.; Chhowalla M.; Birol T.; Koester S. J.; Neurock M.; Mkhoyan K. A. Visualizing the Metal-MoS 2 Contacts in Two-Dimensional Field-Effect Transistors with Atomic Resolution. Phys. Rev. Mater. 2019, 3, 111001.10.1103/PhysRevMaterials.3.111001. DOI
Hirata T.; Ohuchi F. S. Temperature Dependence of the Raman Spectra of 1T-TaS2. Solid State Commun. 2001, 117 (6), 361–364. 10.1016/S0038-1098(00)00468-3. DOI
Tison Y.; Martinez H.; Baraille I.; Loudet M.; Gonbeau D. X-Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Investigations of the Solid Solutions TixTa1-XS 2 (0 ≤ x ≤ 1). Surf. Sci. 2004, 563 (1–3), 83–98. 10.1016/j.susc.2004.05.134. DOI
Zeng Z.; Tan C.; Huang X.; Bao S.; Zhang H. Growth of Noble Metal Nanoparticles on Single- Layer TiS2 and TaS2 Nanosheets for Hydrogen Evolution Reaction. Energy Environ. Sci. 2014, 7 (2), 797–803. 10.1039/C3EE42620C. DOI
XPS Interpretation of Tantalum. https://xpssimplified.com/elements/tantalum.php (accessed June 22, 2020).
Kumar A.; Akansel S.; Stopfel H.; Fazlali M.; Åkerman J.; Brucas R.; Svedlindh P. Spin Transfer Torque Ferromagnetic Resonance Induced Spin Pumping in the Fe/Pd Bilayer System. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95, 064406.10.1103/PhysRevB.95.064406. DOI
Liu L.; Moriyama T.; Ralph D. C.; Buhrman R. A. Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Phys. Rev. Lett. 2011, 106 (3), 036601.10.1103/PhysRevLett.106.036601. PubMed DOI
Tserkovnyak Y.; Brataas A.; Bauer G. E. W. Enhanced Gilbert Damping in Thin Ferromagnetic Films. Phys. Rev. Lett. 2002, 88 (11), 117601.10.1103/PhysRevLett.88.117601. PubMed DOI
Demasius K. U.; Phung T.; Zhang W.; Hughes B. P.; Yang S. H.; Kellock A.; Han W.; Pushp A.; Parkin S. S. P. Enhanced Spin-Orbit Torques by Oxygen Incorporation in Tungsten Films. Nat. Commun. 2016, 7, 10644.10.1038/ncomms10644. PubMed DOI PMC
Saitoh E.; Ueda M.; Miyajima H.; Tatara G. Conversion of Spin Current into Charge Current at Room Temperature: Inverse Spin-Hall Effect. Appl. Phys. Lett. 2006, 88 (18), 182509.10.1063/1.2199473. DOI
Zhao B.; Khokhriakov D.; Zhang Y.; Fu H.; Karpiak B.; Hoque A.; Xu X.; Jiang Y.; Yan B.; Dash S. P. Observation of Charge to Spin Conversion in Weyl Semimetal WTe 2 at Room Temperature. Phys. Rev. Res. 2020, 2 (1), 013286.10.1103/PhysRevResearch.2.013286. DOI
Xu H.; Wei J.; Zhou H.; Feng J.; Xu T.; Du H.; He C.; Huang Y.; Zhang J.; Liu Y.; Wu H.-C.; Guo C.; Wang X.; Guang Y.; Wei H.; Peng Y.; Jiang W.; Yu G.; Han X.; et al. High Spin Hall Conductivity in Large-Area Type-II Dirac Semimetal PtTe 2. Adv. Mater. 2020, 32, 2000513.10.1002/adma.202000513. PubMed DOI
Zhu L.; Sobotkiewich K.; Ma X.; Li X.; Ralph D. C.; Buhrman R. A. Strong Damping-Like Spin-Orbit Torque and Tunable Dzyaloshinskii–Moriya Interaction Generated by Low-Resistivity Pd 1–x Pt x Alloys. Adv. Funct. Mater. 2019, 29 (16), 1805822.10.1002/adfm.201805822. DOI
Zimmermann B.; Mavropoulos P.; Heers S.; Long N. H.; Blügel S.; Mokrousov Y. Anisotropy of Spin Relaxation in Metals. Phys. Rev. Lett. 2012, 109 (23), 236603.10.1103/PhysRevLett.109.236603. PubMed DOI
Long N. H.; Mavropoulos P.; Bauer D. S. G.; Zimmermann B.; Mokrousov Y.; Blügel S. Strong Spin-Orbit Fields and Dyakonov-Perel Spin Dephasing in Supported Metallic Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (18), 180406(R)10.1103/PhysRevB.94.180406. DOI
Amin V. P.; Stiles M. D. Spin Transport at Interfaces with Spin-Orbit Coupling: Formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (10), 104419.10.1103/PhysRevB.94.104419. DOI
Amin V. P.; Stiles M. D. Spin Transport at Interfaces with Spin-Orbit Coupling: Phenomenology. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (10), 104420.10.1103/PhysRevB.94.104420. DOI
Fan X.; Wu J.; Chen Y.; Jerry M. J.; Zhang H.; Xiao J. Q. Observation of the Nonlocal Spin-Orbital Effective Field. Nat. Commun. 2013, 4, 1799.10.1038/ncomms2709. PubMed DOI
Dc M.; Grassi R.; Chen J. Y.; Jamali M.; Reifsnyder Hickey D.; Zhang D.; Zhao Z.; Li H.; Quarterman P.; Lv Y.; et al. Room-Temperature High Spin–Orbit Torque Due to Quantum Confinement in Sputtered BixSe(1–x) Films. Nat. Mater. 2018, 17 (9), 800–807. 10.1038/s41563-018-0136-z. PubMed DOI
Kawaguchi M.; Shimamura K.; Fukami S.; Matsukura F.; Ohno H.; Moriyama T.; Chiba D.; Ono T. Current-Induced Effective Fields Detected by Magnetotrasport Measurements. Appl. Phys. Express 2013, 6 (11), 113002.10.7567/APEX.6.113002. DOI
Kim K. W.; Lee K. J.; Sinova J.; Lee H. W.; Stiles M. D. Spin-Orbit Torques from Interfacial Spin-Orbit Coupling for Various Interfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96 (10), 104438.10.1103/PhysRevB.96.104438. PubMed DOI PMC
Zibouche N.; Kuc A.; Musfeldt J.; Heine T. Transition-Metal Dichalcogenides for Spintronic Applications. Ann. Phys. 2014, 526 (9–10), 395–401. 10.1002/andp.201400137. DOI
Zhao B.; Karpiak B.; Khokhriakov D.; Hoque A. M.; Xu X.; Jiang Y.; Dash S. P.. Edelstein Effect in Type-II Weyl Semimetal WTe2 up to Room Temperature. 2019, 1910.06225, arXive. https://arxiv.org/abs/1910.06225 (accessed June 22, 2020).