Anisotropic magnetoresistance: materials, models and applications

. 2023 Oct ; 10 (10) : 230564. [epub] 20231018

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37859834

Resistance of certain (conductive and otherwise isotropic) ferromagnets turns out to exhibit anisotropy with respect to the direction of magnetization: R∥ for magnetization parallel to the electric current direction is different from R⊥ for magnetization perpendicular to the electric current direction. In this review, this century-old phenomenon is reviewed both from the perspective of materials and physical mechanisms involved. More recently, this effect has also been identified and studied in antiferromagnets. To date, sensors based on the anisotropic magnetoresistance (AMR) effect are widely used in different fields, such as the automotive industry, aerospace or in biomedical imaging.

Zobrazit více v PubMed

McGuire T, Potter T. 1975. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 18. (10.1109/TMAG.1975.1058782) DOI

Campbell IA, Fert A. 1982. Transport properties of ferromagnets. In Ferromagnetic materials, vol. 3 (ed. EP Wohlfarth), pp. 747–804. Amsterdam, The Netherlands: North-Holland Publishing Company.

O’Handley RC. 2000. Magnetic materials. Hoboken, NJ: John Wiley & Sons, Inc.

Isnaini VA, et al. 2020. Room-temperature magnetoresistance of nanocrystalline Ni metal with various grain sizes. Eur. Phys. J. Plus 135, 39. (10.1140/epjp/s13360-019-00067-2) DOI

Döring W. 1938. Die Abhängigkeit des Widerstandes von Nickelkristallen von der Richtung der spontanen Magnetisierung. Ann. Phys. 5, 259. (10.1002/andp.19384240306) DOI

De Ranieri E, et al. 2008. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New J. Phys. 10, 065003. (10.1088/1367-2630/10/6/065003) DOI

Thomson W. 1857. XIX. On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546. (10.1098/rspl.1856.0144) DOI

Thomlinson H. 1882. IV. The influence of stress and strain on the action of physical forces. Proc. R. Soc. Lond. 33, 276. (10.1098/rspl.1881.0108) DOI

Althammer M. 2012. Spin-transport-phenomena in metals, semiconductors, and insulators. PhD thesis, Technische Universität München, Munich, Germany.

Limmer W, et al. 2006. Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: application to (001)- and (113)A-oriented (Ga,Mn)As. Phys. Rev. B 74, 205205. (10.1103/PhysRevB.74.205205) DOI

Li J, Li SL, Wu ZW, Li S, Chu HF, Wang J, Zhang Y, Tian HY, Zheng DN. 2010. A phenomenological approach to the anisotropic magnetoresistance and planar Hall effect in tetragonal La2/3Ca1/3MnO3 thin films. J. Phys.: Condens. Matter 22, 146006. (10.1088/0953-8984/22/14/146006) PubMed DOI

Ritzinger P, et al. 2021. Anisotropic magnetothermal transport in Co2MnGa thin films. Phys. Rev. B 104, 094406. (10.1103/PhysRevB.104.094406) DOI

Zeng FL, et al. 2020. Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in CoxFe1−x single-crystal films. Phys. Rev. Lett. 125, 097201. (10.1103/PhysRevLett.125.097201) PubMed DOI

Kato T, Ishikawa Y, Itoh H, Inoue J. 2008. Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction. Phys. Rev. B 77, 233404. (10.1103/PhysRevB.77.233404) DOI

Nádvorník L, et al. 2021. Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions. Phys. Rev. X 11, 021030. (10.1103/PhysRevX.11.021030) DOI

Jaoul O, Campbell IA, Fert A. 1977. Spontaneous resistivity anisotropy in Ni alloys. J. Magn. Magn. Mater. 5, 23. (10.1016/0304-8853(77)90193-7) DOI

McGuire T, Aboaf J, Klokholm E. 1984. Negative anisotropic magnetoresistance in 3d metals and alloys containing iridium. IEEE Trans. Magn. 20, 5. (10.1109/TMAG.1984.1063188) DOI

Jen SU. 1992. Anisotropic magnetoresistance of Co-Pd alloys. Phys. Rev. B 45, 9819. (10.1103/PhysRevB.45.9819) PubMed DOI

Ishio S, Haga H, Shindo S, Saito H. 1999. Anisotropic magnetoresistance in Fe-Co-Ni alloys. J. Magn. Soc. Jpn 23, 427. (10.3379/jmsjmag.23.427) DOI

Berger L, Freitas PP, Warner JD, Schmidt JE. 1988. On the temperature dependence of the magnetoresistance of ferromagnetic alloys. J. Appl. Phys. 64, 5459. (10.1063/1.342347) DOI

Chakraborty S, Majumdar AK. 1998. Galvanomagnetic studies in γ − Ni100−x−yFexCry permalloys ( DOI

Dahlberg ED, Riggs K. 1988. Magnetotransport: an ideal probe of anisotropy energies in epitaxial films (invited). J. Appl. Phys. 63, 4270. (10.1063/1.340200) DOI

van Gorkom RP, Caro J, Klapwijk TM, Radelaar S. 2001. Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial Fe films. Phys. Rev. B 63, 134432. (10.1103/PhysRevB.63.134432) DOI

El-Tahawy M, et al. 2022. Anisotropic magnetoresistance (AMR) of cobalt: hcp-Co vs. fcc-Co. J. Magn. Magn. Mater. 560, 169660. (10.1016/j.jmmm.2022.169660) DOI

Bates LF. 1946. The magneto-resistance of high coercivity alloys. Proc. Phys. Soc. 58, 153. (10.1088/0959-5309/58/2/302) DOI

Mott NF. 1964. Electrons in transition metals. Adv. Phys. 13, 325. (10.1080/00018736400101041) DOI

Kokado S, Tsunoda M, Harigaya K, Sakuma A. 2012. Anisotropic magnetoresistance effects in Fe, Co, Ni, Fe4N, and half-metallic ferromagnet: a systematic analysis. J. Phys. Soc. Jpn 81, 024705. (10.1143/JPSJ.81.024705) DOI

Rushforth AW, et al. 2007. Anisotropic magnetoresistance components in (Ga,Mn)As. Phys. Rev. Lett. 99, 147207. (10.1103/PhysRevLett.99.147207) PubMed DOI

Výborný K, Kučera J, Sinova J, Rushforth AW, Gallagher BL, Jungwirth T. 2009. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As. Phys. Rev. B 80, 165204. (10.1103/PhysRevB.80.165204) DOI

Yang FJ, Sakuraba Y, Kokado S, Kota Y, Sakuma A, Takanashi K. 2012. Anisotropic magnetoresistance in Co2(Fe, Mn)Si Heusler epitaxial films: a fingerprint of half-metallicity. Phys. Rev. B 86, 020409(R). (10.1103/PhysRevB.86.020409) DOI

Sato T, Kokado S, Kosaka S, Ishikawa T, Ogawa T, Tsunoda M. 2018. Large negative anisotropic magnetoresistance in Co2MnGa Heusler alloy epitaxial thin films. Appl. Phys. Lett. 113, 112407. (10.1063/1.5047821) DOI

Sato T, Kokado S, Tsujikawa M, Ogawa T, Kosaka S, Shirai M, Tsunoda M. 2019. Signs of anisotropic magnetoresistance in Co2MnGa Heusler alloy epitaxial thin films based on current direction. Appl. Phys. Express 12, 103005. (10.7567/1882-0786/ab42b4) DOI

Miao Y, Yang D, Jia L, Li X, Yang S, Gaoa C, Xue D. 2021. Magnetocrystalline anisotropy correlated negative anisotropic magnetoresistance in epitaxial Fe30Co70 thin films. Appl. Phys. Lett. 118, 042404. (10.1063/5.0034232) DOI

Kabara K, Tsunoda M, Kokado S. 2017. Magneto-transport properties of pseudo-single-crystal Mn4N thin films. AIP Adv. 7, 056416. (10.1063/1.4974065) DOI

Yang FJ, Wei C, Chen XQ. 2013. Half-metallicity and anisotropic magnetoresistance of epitaxial Co2FeSi Heusler films. Appl. Phys. Lett. 102, 172403. (10.1063/1.4803537) DOI

Kabara K, Tsunoda M, Kokado S. 2016. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′ − Fe4N thin films. AIP Adv. 6, 055818. (10.1063/1.4943923) DOI

Ritzinger P. 2020. Magneto-thermo-galvanic measurements in magnetic thin-films. Master's thesis, Technische Universität Dresden, Dresden, Germany.

Zyuzin VA. 2021. Linear magnetoconductivity in magnetic metals. Phys. Rev. B 104, L140407. (10.1103/PhysRevB.104.L140407) DOI

Omori Y, Sagasta E, Niimi Y, Gradhand M, Hueso LE, Casanova F, Otani YC. 2019. Relation between spin Hall effect and anomalous Hall effect in 3d ferromagnetic metals. Phys. Rev. B 99, 014403. (10.1103/PhysRevB.99.014403) DOI

Pippard AB. 1989. Magnetoresistance in metals. Cambridge Studies in Low Temperature Physics Series, vol. 2. Cambridge, UK: Cambridge University Press.

Zhang SN, Wu QS, Liu Y, Yazyev OV. 2019. Magnetoresistance from Fermi surface topology. Phys. Rev. B 99, 035142. (10.1103/PhysRevB.99.035142) DOI

Bakonyi I, Czeschka FD, Isnaini VA, Krupp AT, Palotas K, Zsurzsa S, Peter L. 2022. High-field magnetoresistance of microcrystalline and nanocrystalline Ni metal at 3 K and 300 K. Eur. Phys. J. Plus 137, 871. (10.1140/epjp/s13360-022-03068-w) DOI

Sasmal S, Mukherjee J, Suri D, Raman KV. 2021. In-depth analysis of anisotropic magnetoconductance in Bi2Se3 thin films with electron–electron interaction corrections. J. Phys.: Condens. Matter 33, 465601. (10.1088/1361-648X/ac1de0) PubMed DOI

Bakonyi I. 2018. Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity. Eur. Phys. J. Plus 133, 521. (10.1140/epjp/i2018-12350-1) DOI

Ebert H, Vernes A, Banhart J. 1996. Anisotropic electrical resistivity of ferromagnetic Co-Pd and Co-Pt alloys. Phys. Rev. B 54, 8479. (10.1103/PhysRevB.54.8479) PubMed DOI

Stampe PA, Kunkel HP, Wang Z, Williams G. 1995. Influence of spin-orbit coupling on the transport and magnetic properties of Co3Pd97. Phys. Rev. B 52, 335. (10.1103/PhysRevB.52.335) PubMed DOI

Ziese M. 2000. Spontaneous resistivity anisotropy and band structure of La0.7Ca0.3MnO3 and Fe3O4 films. Phys. Rev. B 62, 1044. (10.1103/PhysRevB.62.1044) DOI

Alagoz HS, Desomberg J, Taheri M, Razavi FS, Chow KH, Jung J. 2015. Mechanism of sign crossover of the anisotropic magneto-resistance in La0.7−xPrxCa0.3MnO3 thin films. Appl. Phys. Lett. 106, 082407. (10.1063/1.4913875) DOI

Mizusaki S, Ohnishi T, Douzono A, Nagata Y, Ozawa TC, Samata H, Noro Y. 2009. Large anisotropic magnetoresistance of ruthenium-based Heusler alloy. J. Appl. Phys. 105, 07E513. (10.1063/1.3080561) DOI

Bolte M, Steiner M, Pels C, Barthelmeß M, Kruse J, Merkt U, Meier G, Holz M, Pfannkuche D. 2005. Magnetotransport through magnetic domain patterns in permalloy rectangles. Phys. Rev. B 72, 224436. (10.1103/PhysRevB.72.224436) DOI

Kriegner D, et al. 2016. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623. (10.1038/ncomms11623) PubMed DOI PMC

Stoner EC, Wohlfarth EP. 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 240, 826. (10.1098/rsta.1948.0007) DOI

Volný J, et al. 2020. Electrical transport properties of bulk tetragonal CuMnAs. Phys. Rev. Mater. 4, 064403. (10.1103/PhysRevMaterials.4.064403) DOI

Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S, Sauer R. 2008. Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers. Phys. Rev. B 77, 205210. (10.1103/PhysRevB.77.205210) DOI

Song C, You Y, Chen X, Zhou X, Wang Y, Pan F. 2018. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001. (10.1088/1361-6528/aaa812) PubMed DOI

Correa C A, Výborný K. 2018. Electronic structure and magnetic anisotropies of antiferromagnetic transition-metal difluorides. Phys. Rev. B 97, 235111. (10.1103/PhysRevB.97.235111) DOI

Liu J, Balents L. 2017. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202. (10.1103/PhysRevLett.119.087202) PubMed DOI

Bozorth RM. 1946. Magnetoresistance and domain theory of iron-nickel alloys. Phys. Rev. 70, 923. (10.1103/PhysRev.70.923) DOI

Birss RR. 1966. Symmetry and magnetism. Series of monographs on selected topics in solid state physics. Amsterdam, The Netherlands: North-Holland Pub. Co.

Badura A, et al. Submitted. Even-in-magnetic-field part of transverse resistivity as a quantitative probe of magnetic order: application to antiferromagnetic Mn5Si3.

Kokado S, Tsunoda M. 2015. Twofold and fourfold symmetric anisotropic magnetoresistance effect in a model with crystal field. J. Phys. Soc. Jpn. 84, 094710. (10.7566/JPSJ.84.094710) DOI

Kriegner D, et al. 2017. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418. (10.1103/PhysRevB.96.214418) DOI

Nam Hai P, Sasaki D, Duc Anh L, Tanaka M. 2012. Crystalline anisotropic magnetoresistance with two-fold and eight-fold symmetry in (In,Fe)As ferromagnetic semiconductor. Appl. Phys. Lett. 100, 262409. (10.1063/1.4730955) DOI

Terry I, Penney T, von Molnar S, Becla P. 1996. Low temperature magnetoresistance of the persistent photoconductor Cd0.9Mn0.1Te:In. J. Cryst. Growth 159, 1070. (10.1016/0022-0248(95)00695-8) DOI

Jungwirth T, Niu Q, MacDonald AH. 2002. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208. (10.1103/PhysRevLett.88.207208) PubMed DOI

Trushin M, Výborný K, Moraczewski P, Kovalev AA, Schliemann J, Jungwirth T. 2009. Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities. Phys. Rev. B 80, 134405. (10.1103/PhysRevB.80.134405) DOI

Výborný K, Kovalev AA, Sinova J, Jungwirth T. 2009. Semiclassical framework for the calculation of transport anisotropies. Phys. Rev. B 79, 045427. (10.1103/PhysRevB.79.045427) DOI

Ahn S, Das Sarma S. 2021. Screening, Friedel oscillations, RKKY interaction, and Drude transport in anisotropic two-dimensional systems. Phys. Rev. B 103, 165303. (10.1103/PhysRevB.103.165303) DOI

Smit J. 1951. Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica 16, 612. (10.1016/0031-8914(51)90117-6) DOI

Banhart J, Ebert H, Vernes A. 1997. Applicability of the two-current model for systems with strongly spin-dependent disorder. Phys. Rev. B 56, 10165. (10.1103/PhysRevB.56.10165) DOI

da Câmara Santa Clara Gomes T, Marchal N, Abreu Araujo F, Piraux L. 2019. Tunable magnetoresistance and thermopower in interconnected NiCr and CoCr nanowire networks. Appl. Phys. Lett. 115, 242402. (10.1063/1.5130718) DOI

Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald AH. 2006. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809. (10.1103/RevModPhys.78.809) DOI

Jungwirth T, Sinova J, Wang KY, Edmonds KW, Campion RP, Gallagher BL, Foxon CT, Niu Q, MacDonald AH. 2003. Dc-transport properties of ferromagnetic (Ga,Mn)As semiconductors. Appl. Phys. Lett. 83, 320. (10.1063/1.1590433) DOI

Trushin M, Castro Neto AH, Vignale G, Culcer D. 2019. Hidden anisotropy in the Drude conductivity of charge carriers with Dirac-Schrödinger dynamics. Phys. Rev. B 100, 035427. (10.1103/PhysRevB.100.035427) DOI

Kato T, Ishikawa Y, Itoh H, Inoue J. 2007. Magnetoresistance and Hall effect in spin-polarized two-dimensional electron gas with spin-orbit interaction. Phys. Stat. Sol. B 244, 4403-4406. (10.1002/pssb.200777260) DOI

Mott NF. 1936. The electrical conductivity of transition metals. Proc. R. Soc. A 153, 699. (10.1098/rspa.1936.0031) DOI

Banhart J, Ebert H. 1995. First-principles theory of spontaneous-resistance anisotropy and spontaneous Hall effect in disordered ferromagnetic alloys. Europhys. Lett. 32, 517. (10.1209/0295-5075/32/6/010) DOI

Ebert H, et al. 2011. Calculating condensed matter properties using the KKR-Green’s function method–recent developments and applications. Rep. Prog. Phys. 74, 096501. (10.1088/0034-4885/74/9/096501) DOI

Turek I, Kudrnovský J, Drchal V. 2012. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Phys. Rev. B 86, 014405. (10.1103/PhysRevB.86.014405) DOI

Khmelevskyi S, Palotás K, Szunyogh L, Weinberger P. 2003. Ab initio calculation of the anisotropic magnetoresistance in Ni1−cFec bulk alloys. Phys. Rev. B 68, 012402. (10.1103/PhysRevB.68.012402) DOI

Freitas PP, Berger L, Silvain JF. 1987. Anisotropic magnetoresistance of Co-Fe thin films. J. Appl. Phys. 61, 4385. (10.1063/1.338430) DOI

Šipr O, Wimmer S, Mankovsky S, Ebert H. 2020. Transport properties of doped permalloy via ab initio calculations: effect of host disorder. Phys. Rev. B 101, 085109. (10.1103/PhysRevB.101.085109) DOI

Vernes A, Ebert H, Banhart J. 2003. Electronic conductivity in NixCr1−x and NixCu1−x fcc alloy systems. Phys. Rev. B 68, 134404. (10.1103/PhysRevB.68.134404) DOI

Yin Y, et al. 2015. Tunable permalloy-based films for magnonic devices. Phys. Rev. B 92, 024427. (10.1103/PhysRevB.92.024427) DOI

Brito WH, Aguiar MCO, Haule K, Kotliar G. 2016. Metal-insulator transition in VO2: a DFT+DMFT perspective. Phys. Rev. Lett. 117, 056402. (10.1103/PhysRevLett.117.056402) PubMed DOI

Šmejkal L, Železný J, Sinova J, Jungwirth T. 2017. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402. (10.1103/PhysRevLett.118.106402) PubMed DOI

Yang H, et al. 2021. Colossal angular magnetoresistance in the antiferromagnetic semiconductor EuTe2. Phys. Rev. B 104, 214419. (10.1103/PhysRevB.104.214419) DOI

Rijks TGSM, Coehoorn R, de Jong MJM, de Jonge WJM. 1995. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys. Rev. B 51, 283. (10.1103/PhysRevB.51.283) PubMed DOI

Kimling J, Gooth J, Nielsch K. 2013. Anisotropic magnetothermal resistance in Ni nanowires. Phys. Rev. B 87, 094409. (10.1103/PhysRevB.87.094409) DOI

Xiao X, Li JX, Ding Z, Wu YZ. 2015. Four-fold symmetric anisotropic magnetoresistance of single-crystalline Ni(001) film. J. Appl. Phys. 118, 203905. (10.1063/1.4936175) DOI

Bakonyi I, Toth Kadar E, Toth J, Kiss LF, Pogany L, Cziraki A, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B. 2002. Room temperature electronic transport properties of Co metal and Co(Ru) dilute alloys. Europhys. Lett. 58, 408. (10.1209/epl/i2002-00654-x) DOI

Xiao X, Liang JH, Chen BL, Li JX, Ma DH, Ding Z, Wu YZ. 2015. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films. J. Appl. Phys. 118, 043908. (10.1063/1.4927620) DOI

Miao Y, et al. 2020. Non-cosine square angular-dependent magnetoresistance of the face-centered-cubic Co thin films. J. Magn. Magn. Mater. 512, 167013. (10.1016/j.jmmm.2020.167013) DOI

Levy PM, Fert A. 2016. The longevity of Jacques Friedel’s model of the virtual bound state. C. R. Phys. 17, 447. (10.1016/j.crhy.2015.12.011) DOI

Miyazaki T, Oikawa M. 1991. Magnetoresistance of Ni-Fe-Co ternary alloy films. J. Magn. Magn. Mater. 97, 171. (10.1016/0304-8853(91)90177-C) DOI

Wang S, Gao T, Wang C, He J. 2013. Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J. Alloys Compd. 554, 405. (10.1016/j.jallcom.2012.12.004) DOI

Mašek J, et al. 2010. Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As. Phys. Rev. Lett. 105, 227202. (10.1103/PhysRevLett.105.227202) PubMed DOI

Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, Mielke CH. 2002. Anisotropic magnetoresistance in Ga1−xMnxAs. Phys. Rev. B 65, 212407. (10.1103/PhysRevB.65.212407) DOI

Wang KY, Edmonds KW, Campion RP, Zhao LX, Foxon CT, Gallagher BT. 2005. Anisotropic magnetoresistance and magnetic anisotropy in high-quality (Ga,Mn)As films. Phys. Rev. B 72, 085201. (10.1103/PhysRevB.72.085201) DOI

Miyakozawa S, Chen L, Matsukura F, Ohno H. 2016. Temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance in (Ga,Mn)As codoped with Li. Appl. Phys. Lett. 108, 112404. (10.1063/1.4944328) DOI

Howells B, Wang M, Edmonds KW, Wadley P, Campion RP, Rushforth AW, Foxon CT, Gallagher BL. 2013. Crystalline anisotropic magnetoresistance in quaternary ferromagnetic semiconductor (Ga,Mn)(As,Sb). Appl. Phys. Lett. 102, 052407. (10.1063/1.4791580) DOI

Wang W, Chen J, Deng J, Che J, Hu B, Cheng X. 2019. Effect of Sb content on anisotropic magnetoresistance in a (Ga, Mn)(As, Sb) ferromagnetic semiconductor thin film. RSC Adv. 9, 10776-10780. (10.1039/c8ra10256b) PubMed DOI PMC

Jungwirth T, Abolfath M, Sinova J, Kučera J, MacDonald AH. 2002. Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As. Appl. Phys. Lett. 81, 4029. (10.1063/1.1523160) DOI

Jungwirth T, et al. 2005. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B 72, 165204. (10.1103/PhysRevB.72.165204) DOI

Shapira Y, Vu TQ. 1990. Magnetoresistance and Hall effect near the metal-insulator transition of n-type Cd0.95Mn0.05Te. Phys. Rev. B 41, 5931. (10.1103/PhysRevB.41.5931) PubMed DOI

Navarro-Quezada A, Aiglinger M, Faina B, Gas K, Matzer M, Li T, Adhikari R, Sawicki M, Bonanni A. 2019. Magnetotransport in phase-separated (Ga,Fe)N with γ′ − GayFe4−yN nanocrystals. Phys. Rev. B 99, 085201. (10.1103/PhysRevB.99.085201) DOI

Lee JS, Richardella A, Rench DW, Fraleigh RD, Flanagan TC, Borchers JA, Tao J, Samarth N. 2014. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 89, 174425. (10.1103/PhysRevB.89.174425) DOI

Dyck JS, Drašar Č, Lošt’ák P, Uher C. 2005. Low-temperature ferromagnetic properties of the diluted magnetic semiconductor Sb2−xCrxTe3. Phys. Rev. B 71, 115214. (10.1103/PhysRevB.71.115214) DOI

Lee JW, Kuroda S, Takano F, Akinaga H, Takita K. 2006. Anisotropy of magnetization and magnetoresistance of (Zn,Co)O films grown by pulsed laser deposition. Phys. Stat. Sol. (c) 3, 4098. (10.1002/pssc.200672872) DOI

Khalid M, Esquinazi P. 2012. Hydrogen-induced ferromagnetism in ZnO single crystals investigated by magnetotransport. Phys. Rev. B 85, 134424. (10.1103/PhysRevB.85.134424) DOI

Landau LD. 1933. A possible explanation of the field dependence of the susceptibility at low temperatures. Phys. Z. Sowjet. 4, 675. (10.1016/B978-0-08-010586-4.50017-1) DOI

Fina I, et al. 2014. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671. (10.1038/ncomms5671) PubMed DOI

Wang C, Seinige H, Cao G, Zhou J-S, Goodenough JB, Tsoi M. 2014. Anisotropic magnetoresistance in antiferromagnetic Sr2IrO4. Phys. Rev. X 4, 041034. (10.1103/PhysRevX.4.041034) DOI

Marti X, et al. 2014. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367. (10.1038/nmat3861) PubMed DOI

Kudrnovský J, Drchal V, Turek I. 2015. Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition. Phys. Rev. B 91, 014435. (10.1103/PhysRevB.91.014435) DOI

Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y. 2018. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005. (10.1103/RevModPhys.90.015005) DOI

Wadley P, et al. 2016. Electrical switching of an antiferromagnet. Science 351, 6273. (10.1126/science.aab1031) PubMed DOI

Zubáč J, Kašpar Z, Krizek F, Förster T, Campion RP, Novák V, Jungwirth T, Olejník K. 2021. Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424. (10.1103/PhysRevB.104.184424) DOI

Emmanouilidou E, Cao H, Tang P, Gui X, Hu C, Shen B, Wu J, Zhang S-C, Xie W, Ni N. 2017. Magnetic order induces symmetry breaking in the single-crystalline orthorhombic CuMnAs semimetal. Phys. Rev. B 96, 224405. (10.1103/PhysRevB.96.224405) DOI

Bodnar SY, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik AA, Elmers H-J, Kläui M, Jourdan M. 2018. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348. (10.1038/s41467-017-02780-x) PubMed DOI PMC

Kabara K, Tsunoda M, Kokado S. 2014. Annealing effects on nitrogen site ordering and anisotropic magnetoresistance in pseudo-single-crystal γ′-Fe4N films. Appl. Phys. Express 7, 063003. (10.7567/APEX.7.063003) DOI

Manna K, Sun Y, Muechler L, Kübler J, Felser C. 2018. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244-256. (10.1038/s41578-018-0036-5) DOI

Heusler F. 1903. Über magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219.

Breidenbach AT, Yu H, Peterson TA, McFadden AP, Peria WK, Palmstrøm CJ, Crowell PA. 2022. Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl. Phys. Rev. B 105, 144405. (10.1103/PhysRevB.105.144405) DOI

Sakuraba Y, Kokado S, Hirayama Y, Furubayashi T, Sukegawa H, Li S, Takahashi YK, Hono K. 2014. Quantitative analysis of anisotropic magnetoresistance in Co2MnZ and Co2FeZ epitaxial thin films: a facile way to investigate spin-polarization in half-metallic Heusler compounds. Appl. Phys. Lett. 104, 172407. (10.1063/1.4874851) DOI

Yako H, Kubota T, Takanashi K. 2015. Anisotropic magnetoresistance effect in Co2(Fe–Mn)(Al–Si) Heusler alloy thin film. IEEE Trans. Magn. 51, 11. (10.1109/TMAG.2015.2439284) DOI

Oogane M, McFadden AP, Kota Y, Brown-Heft TL, Tsunoda M, Ando Y, Palmstrøm CJ. 2018. Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films. Jpn. J. Appl. Phys. 57, 063001. (10.7567/JJAP.57.063001) DOI

Felser C, Hirohata A. 2016. Heusler alloys: properties, growth, applications. Cham, Switzerland: Springer.

Ciccarelli C. 2016. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855. (10.1038/nphys3772) DOI

Ohtomo A, Hwang HY. 2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423. (10.1038/nature02308) PubMed DOI

Shalom MB, Tai CW, Lereah Y, Sachs M, Levy E, Rakhmilevitch D, Palevski A, Dagan Y. 2009. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403(R). (10.1103/PhysRevB.80.140403) DOI

Reyren N, et al. 2007. Superconducting interfaces between insulating oxides. Science 317, 1196. (10.1126/science.1146006) PubMed DOI

Huijben M, Brinkman A, Koster G, Rijnders G, Hilgenkamp H, Blank DHA. 2009. Structure–property relation of SrTiO3/LaAlO3 interfaces. Adv. Mater. 21, 1665. (10.1002/adma.200801448) DOI

Lebedev N, Stehno M, Rana A, Gauquelin N, Verbeeck J, Brinkman A, Aarts J. 2020. Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO3/SrTiO3 interfaces. J. Phys.: Condens. Matter 33, 055001. (10.1088/1361-648X/abc102) PubMed DOI

Boschker H, Mannhart J. 2017. Quantum-matter heterostructures. Annu. Rev. Condens. Matter Phys. 8, 145-64. (10.1146/annurev-conmatphys-031016-025404) DOI

Li T, Zhang L, Hong X. 2022. Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials. J. Vac. Sci. Technol. A 40, 010807. (10.1116/6.0001443) DOI

Bovenzi N, Diez M. 2017. Semiclassical theory of anisotropic transport at LaAlO3/SrTiO3 interfaces under an in-plane magnetic field. Phys. Rev. B 95, 205430. (10.1103/PhysRevB.95.205430) DOI

Ariando WX, et al. 2011. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2, 188. (10.1038/ncomms1192) PubMed DOI

Joshua A, Ruhman J, Pecker S, Altman E, Ilani S. 2013. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633. (10.1073/pnas.1221453110) PubMed DOI PMC

Rout PK, Agireen I, Maniv E, Goldstein M, Dagan Y. 2017. Six-fold crystalline anisotropic magnetoresistance in the (111) LaAlO3/SrTiO3 oxide interface. Phys. Rev. B 95, 241107(R). (10.1103/PhysRevB.95.241107) DOI

Miao L, Du R, Yin Y, Li Q. 2016. Anisotropic magneto-transport properties of electron gases at SrTiO3 (111) and (110) surfaces. Appl. Phys. Lett. 109, 261604. (10.1063/1.4972985) DOI

Harsan Ma H, Zhou J, Yang M, Liu Y, Zeng SW, Zhou WX, Zhang LC, Venkatesan T, Feng YP, Ariando. 2017. Giant crystalline anisotropic magnetoresistance in nonmagnetic perovskite oxide heterostructures. Phys. Rev. B 95, 155314. (10.1103/PhysRevB.95.155314) DOI

Boudjada N, Khait I, Paramekanti A. 2019. Anisotropic magnetoresistance in multiband systems: two-dimensional electron gases and polar metals at oxide interfaces. Phys. Rev. B 99, 195453. (10.1103/PhysRevB.99.195453) DOI

Wadehra N, Tomar R, Varma RM, Gopal RK, Singh Y, Dattagupta S, Chakraverty S. 2020. Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling. Nat. Commun. 11, 874. (10.1038/s41467-020-14689-z) PubMed DOI PMC

Tomar R, Kakkar S, Bera C, Chakraverty S. 2021. Anisotropic magnetoresistance and planar Hall effect in (001) and (111) LaVO3 / SrTiO3 heterostructures. Phys. Rev. B 103, 115407. (10.1103/PhysRevB.103.115407) DOI

Chen Y, et al. 2015. Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface. Nano Lett. 15, 1849. (10.1021/nl504622w) PubMed DOI

Granada M, Bustingorry S, Pontello DE, Barturen M, Eddrief M, Marangolo M, Milano J. 2016. Magnetotransport properties of Fe0.8Ga0.2 films with stripe domains. Phys. Rev. B 94, 184435. (10.1103/PhysRevB.94.184435) DOI

Philippi-Kobs A, Farhadi A, Matheis L, Lott D, Chuvilin A, Oepen HP. 2019. Impact of symmetry on anisotropic magnetoresistance in textured ferromagnetic thin films. Phys. Rev. Lett. 123, 137201. (10.1103/PhysRevLett.123.137201) PubMed DOI

Hupfauer T, Matos-Abiague A, Gmitra M, Schiller F, Loher J, Bougeard D, Back CH, Fabian J, Weiss D. 2015. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat. Commun. 6, 7374. (10.1038/ncomms8374) PubMed DOI PMC

Shi X, Li X, Lai Z, Liu X, Mi W. 2020. Structure, magnetic and electronic transport properties in antiperovskite cubic γ′-CuFe3N polycrystalline films. Intermetallics 121, 106779. (10.1016/j.intermet.2020.106779) DOI

Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C-C, Takahashi M. 2009. Negative anisotropic magnetoresistance in Fe4N Film. Appl. Phys. Express 2, 083001. (10.1143/APEX.2.083001) DOI

Tsunoda M, Takahashi H, Kokado S, Komasaki Y, Sakuma A, Takahashi M. 2010. Anomalous anisotropic magnetoresistance in pseudo-single-crystal γ′-Fe4N Films. Appl. Phys. Express 3, 113003. (10.1143/APEX.3.113003) DOI

Klein L, Marshall AF, Reiner JW, Ahn CH, Geballe TH, Beasley MR, Kapitulnik A. 1998. Large magnetoresistance of single-crystal films of ferromagnetic SrRuO3. J. Magn. Magn. Mater. 188, 319. (10.1016/S0304-8853(98)00201-7) DOI

Herranz G, Sanchez F, Garcia-Cuenca MV, Ferrater C, Varela M, Martinez B, Fontcuberta J. 2004. Anisotropic magnetoresistance in SrRuO3 ferromagnetic oxide. J. Magn. Magn. Mater. 272–276, 517. (10.1016/j.jmmm.2003.12.1050) DOI

Rao RA, Kacedon DB, Eom CB. 1998. Anisotropic magnetotransport properties of epitaxial thin films of conductive ferromagnetic oxide SrRuO3. J. Appl. Phys. 83, 6995. (10.1063/1.367674) DOI

Haham N, Shperber Y, Reiner JW, Klein L. 2013. Low-temperatrure anisotropic magnetoresistance and planar Hall effect in SrRuO3. Phys. Rev. B. 87, 144407. (10.1103/PhysRevB.87.144407) DOI

Chaurasia R, Asokan K, Kumar K, Pramanik AK. 2021. Low-temperature ferromagnetism in perovskite SrIrO3 films. Phys. Rev. B 103, 064418. (10.1103/PhysRevB.103.064418) DOI

Zeng Z, Greenblatt M, Croft M. 1999. Large magnetoresistance in antiferromagnetic CaMnO3−δ. Phys. Rev. B 59, 8784. (10.1103/PhysRevB.59.8784) DOI

Li X, et al. 2021. Charge disproportionation and complex magnetism in a PbMnO3 perovskite synthesized under high pressure. Chem. Mater. 33, 92-101. (10.1021/acs.chemmater.0c02706) DOI

Bibes M, Laukhin V, Valencia S, Martinez B, Fontcuberta J, Gorbenko OY, Kaul AR, Martinez JL. 2005. Anisotropic magnetoresistance and anomalous Hall effect in manganite thin films. J. Phys.: Condens. Matter 17, 2733. (10.1088/0953-8984/17/17/022) DOI

O’Donnell J, Eckstein JN, Rzchowski MS. 2000. Temperature and magnetic field dependent transport anisotropies in La0.7Ca0.3MnO3 films. Appl. Phys. Lett. 76, 218. (10.1063/1.125707) DOI

Yang S, Chen Q, Yang Y, Gao Y, Xu R, Zhang H, Ma J. 2021. Silver addition in polycrystalline La0.7Ca0.3MnO3: large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J. Alloys Compd. 882, 160719. (10.1016/j.jallcom.2021.160719) DOI

Sharma H, Tulapurkar A, Tomy CV. 2014. Sign reversal of anisotropic magnetoresistance in La0.7Ca0.3MnO3/SrTiO3 ultrathin films. Appl. Phys. Lett. 105, 222406. (10.1063/1.4903236) DOI

Xie Y, Yang H, Liu Y, Yang Z, Chen B, Zuo Z, Katlakunta S, Zhan Q, Li R-W. 2013. Strain induced tunable anisotropic magnetoresistance in La0.67Ca0.33MnO3/BaTiO3 heterostructures. J. Appl. Phys. 113, 17C716. (10.1063/1.4795841) DOI

Kandpal LM, Singh S, Kumar P, Siwach PK, Gupta A, Awana VPS, Singh HK. 2016. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films. J. Magn. Magn. Mater. 408, 60. (10.1016/j.jmmm.2016.02.022) DOI

Wong AT, Beekman C, Guo H, Siemons W, Gai Z, Arenholz E, Takamura Y, Ward TZ. 2014. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3. Appl. Phys. Lett. 105, 052401. (10.1063/1.4892420) DOI

Infante IC, Laukhin V, Sanchez F, Fotcuberta J, Melnikov O, Gorbenko OY, Kaul AR. 2006. Anisotropic magnetoresistance in epitaxial (110) manganite films. J. Appl. Phys. 99, 08C502. (10.1063/1.2150812) DOI

Kumar P, Prasad R, Dwivedi RK, Singh HK. 2011. Out-of-plane low field anisotropic magnetoresistance in Nd0.51Sr0.49MnO3 thin films. J. Magn. Magn. Mater. 323, 2564. (10.1016/j.jmmm.2011.05.032) DOI

Chen YZ, Sun JR, Zhao TY, Wang J, Wang ZH, Shen BG, Pryds N. 2009. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films. Appl. Phys. Lett. 95, 132506. (10.1063/1.3240407) DOI

Egilmez M, Saber MM, Mansour AI, Ma R, Chow KH, Jung J. 2008. Dramatic strain induced modification of the low field anisotropic magnetoresistance in ultrathin manganite films. Appl. Phys. Lett. 93, 182505. (10.1063/1.3021083) DOI

Li P, Jin C, Jiang EY, Bai HL. 2010. Origin of the twofold and fourfold symmetric anisotropic magnetoresistance in epitaxial Fe3O4 films. J. Appl. Phys. 108, 093921. (10.1063/1.3499696) DOI

Bai H, et al. 2022. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202. (10.1103/PhysRevLett.128.197202) PubMed DOI

Polesya S, Mankovsky S, Ebert H, Neumov PG, ElGhazali MA, Schnelle W, Medvedev S, Mangelsen S, Bensch W. 2020. Mn1/4NbS2: magnetic and magnetotransport properties at ambient pressure and ferro- to antiferromagnetic transition under pressure. Phys. Rev. B 102, 174423. (10.1103/PhysRevB.102.174423) DOI

Hardy WJ, Chen C-W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E. 2015. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 91, 054426. (10.1103/PhysRevB.91.054426) DOI

Zhang H, et al. 2018. Electrical and anisotropic magnetic properties in layered Mn1/3TaS2 crystals. Appl. Phys. Lett. 113, 072402. (10.1063/1.5034502) DOI

Mayoh DA, Bouaziz J, Hall AE, Staunton JB, Lees MR, Balakrishnan G. 2022. Giant topological and planar Hall effect in Cr1/3NbS2. Phys. Rev. Res. 4, 013134. (10.1103/PhysRevResearch.4.013134) DOI

Kar I, Routh S, Ghorai S, Purwar S, Thirupathaiah S. 2023. Observation of weak Kondo effect and angle dependent magnetoresistance in layered antiferromagnetic V5S8 single crystals. Solid State Commun. 369, 115209. (10.1016/j.ssc.2023.115209) DOI

Fang D, Kurebayashi H, Wunderlich J, Výborný K, Zarbo LP, Campion RP, Casiraghi A, Gallagher BL, Jungwirth T, Ferguson AJ. 2011. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413. (10.1038/nnano.2011.68) PubMed DOI

Manchon A, Železný J, Miron IM, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P. 2019. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004. (10.1103/RevModPhys.91.035004) DOI

Mellnik AR, et al. 2014. Spin-transfer torque generated by a topological insulator. Nature 511, 449. (10.1038/nature13534) PubMed DOI

Booth K, Gray I, Dahlberg ED. 2021. Determining the AC susceptibility of thin metal films using the anisotropic magnetoresistance. J. Magn. Magn. Mater. 523, 167631. (10.1016/j.jmmm.2020.167631) DOI

Pignard S, Goglio G, Radulescu A, Piraux L, Dubois S, Declemy A, Duvail JL. 2002. Study of the magnetization reversal in individual nickel nanowires. J. Appl. Phys. 87, 824. (10.1063/1.371947) DOI

Wegrowe J-E, Kelly D, Franck A, Gilbert SE, Ansermet J-P. 1999. Magnetoresistance of ferromagnetic nanowires. Phys. Rev. Lett. 82, 3681. (10.1103/PhysRevLett.82.3681.) DOI

Rheem Y, Yoo B-Y, Beyermann WP, Myung NV. 2006. Magnetotransport studies of a single nickel nanowire. Nanotechnology 18, 015202. (10.1088/0957-4484/18/1/015202) PubMed DOI

Hayashi M, Thomas L, Rettner C, Moriya R, Jiang X, Parkin SP. 2006. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205. (10.1103/PhysRevLett.97.207205) PubMed DOI

Nam Hai P, Duc Anh L, Tanaka M. 2012. Electron effective mass in n-type electron-induced ferromagnetic semiconductor (In,Fe)As: evidence of conduction band transport. Appl. Phys. Lett. 101, 252410. (10.1063/1.4772630) DOI

Campbell IA, Fert A, Jaoul O. 1970. The spontaneous resistivity anisotropy in Ni-based alloys. J. Phys. C 3, S95. (10.1088/0022-3719/3/1S/310) DOI

Berger L. 2011. Spin relaxation in metallic ferromagnets. Phys. Rev. B 83, 054410. (10.1103/PhysRevB.83.054410) DOI

Narayanapillai K, Gopinadhan K, Qiu X, Annadi A, Yang H. 2014. Current-driven spin orbit field in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 105, 162405. (10.1063/1.4899122) DOI

Feng Z, et al. 2012. Spin Hall angle quantification from spin pumping and microwave photoresistance. Phys. Rev. B 85, 214423. (10.1103/PhysRevB.85.214423) DOI

Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A. 2010. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601. (10.1103/PhysRevLett.104.046601) PubMed DOI

Xing X, et al. . 2018. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a ‘parent’ compound of 112-type iron pnictide superconductors. J. Phys.: Condens. Matter 30, 025701. (10.1088/1361-648X/aa9c11) PubMed DOI

Park J-H, et al. 2021. Temperature dependence of intrinsic and extrinsic contributions to anisotropic magnetoresistance. Sci. Rep. 11, 20884. (10.1038/s41598-021-00374-8) PubMed DOI PMC

Tesařová N, et al. 2014. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203. (10.1103/PhysRevB.89.085203) DOI

Silber R, et al. 2019. Quadratic magneto-optic Kerr effect spectroscopy of Fe epitaxial films on MgO(001) substrates. Phys. Rev. B 100, 064403. (10.1103/PhysRevB.100.064403) DOI

Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C. 2007. Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2FeSi Heusler compound. J. Phys. D: Appl. Phys. 40, 1563. (10.1088/0022-3727/40/6/S09) DOI

Valencia S, Kleibert A, Gaupp A, Rusz J, Legut D, Bansmann J, Gudat W, Oppeneer PM. 2010. Quadratic X-ray magneto-optical effect upon reflection in a near-normal-incidence configuration at the M edges of 3d-transition metals. Phys. Rev. Lett. 104, 187401. (10.1103/PhysRevLett.104.187401) PubMed DOI

Zink BL. 2022. Thermal effects in spintronic materials and devices: an experimentalist’s guide. J. Magn. Magn. Mater. 564, 170120. (10.1016/j.jmmm.2022.170120) DOI

Slachter A, Bakker FL, van Wees BJ. 2011. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 174408. (10.1103/PhysRevB.84.174408) DOI

Wegrowe J-E, Drouhin H-J, Lacour D. 2014. Anisotropic magnetothermal transport and spin Seebeck effect. Phys. Rev. B 89, 094409. (10.1103/PhysRevB.89.094409) DOI

Jungwirth T, Wunderlich J, Novák V, Olejník K, Gallagher BL, Campion RP, Edmonds KW, Rushforth AW, Ferguson AJ, Němec P. 2014. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 86, 855. (10.1103/RevModPhys.86.855) DOI

Heikkilä TT, Hatami M, Bauer GEW. 2010. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408(R). (10.1103/PhysRevB.81.100408) DOI

Corliss LM, Elliott N, Hastings JM, Sass RL. 1961. Magnetic structure of chromium selenide. Phys. Rev. 122, 1402. (10.1103/PhysRev.122.1402) DOI

Shindou R, Nagaosa N. 2001. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801. (10.1103/PhysRevLett.87.116801) PubMed DOI

Chen H, Niu Q, MacDonald AH. 2014. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205. (10.1103/PhysRevLett.112.017205) PubMed DOI

Qin P, et al. 2020. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano 14, 6242. (10.1021/acsnano.0c02325) PubMed DOI

Xiaoning W, et al. 2019. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 181, 537. (10.1016/j.actamat.2019.10.020) DOI

Zemen J, Kučera J. 2009. Magnetocrystalline anisotropies in (Ga, Mn) As: systematic theoretical study and comparison with experiment. Phys. Rev. B 80, 155203. (10.1103/PhysRevB.80.155203) DOI

Velev J, Sabirianov RF, Jaswal SS, Tsymbal EY. 2005. Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203. (10.1103/PhysRevLett.94.127203) PubMed DOI

Hu C, Teng J, Yu G, Lu W, Ji W. 2015. Conditions for quantized anisotropic magnetoresistance. Phys. Rev. B 91, 045438. (10.1103/PhysRevB.91.045438) DOI

Zhao C-J, Lei D, Jia-Shun HF, Jing-Yan Z, Guang-Hua Y. 2013. Research progress in anisotropic magnetoresistance. Rare Met. 32, 213. (10.1007/s12598-013-0090-5) DOI

Autës G, Barreteau C, Spanjaard D, Desjonquëres M-C. 2008. Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries. Phys. Rev. B 77, 155437. (10.1103/PhysRevB.77.155437) DOI

Moodera JS, Kinder LR, Wong TM, Meservey R. 1995. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273. (10.1103/PhysRevLett.74.3273) PubMed DOI

Julliere M. 1975. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225. (10.1016/0375-9601(75)90174-7) DOI

Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. 2004. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203. (10.1103/PhysRevLett.93.117203) PubMed DOI

Schöneberg J, Ferriani P, Heinze S, Weismann A, Berndt R. 2018. Tunneling anisotropic magnetoresistance via molecular π orbitals of Pb dimers. Phys. Rev. B 97, 041114. (10.1103/PhysRevB.97.041114) DOI

Kandala A, Richardella A, Kempinger S, Liu C-X, Samarth N. 2015. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434. (10.1038/ncomms8434) PubMed DOI PMC

Liu J, Cornelissen LJ, Shan J, Kuschel T, van Wees BJ. 2017. Magnon planar Hall effect and anisotropic magnetoresistance in a magnetic insulator. Phys. Rev. B 95, 140402(R). (10.1103/PhysRevB.95.140402) DOI

Geprägs S, et al. 2020. Static magnetic proximity effect and spin Hall magnetoresistance in Pt/Y3Fe5O12 and inverted Y3Fe5O12/Pt bilayers. Phys. Rev. B 102, 214438. (10.1103/PhysRevB.102.214438) DOI

Lin T, Tang C, Alyahayaei HM, Shi J. 2014. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures. Phys. Rev. Lett. 113, 037203. (10.1103/PhysRevLett.113.037203) PubMed DOI

Sklenar J, et al. 2021. Proximity-induced anisotropic magnetoresistance in magnetized topological insulators. Appl. Phys. Lett. 118, 232402. (10.1063/5.0052301) DOI

Yang SR, Fanchiang YT, Chen CC, Tseng CC, Liu YC, Guo MX, Hong M, Lee SF, Kwo J. 2019. Evidence for exchange Dirac gap in magnetotransport of topological insulator-magnetic insulator heterostructures. Phys. Rev. B 100, 045138. (10.1103/PhysRevB.100.045138) DOI

Stutzke NA, Russek SE, Pappas DP, Tondra M. 2005. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 97, 10Q107. (10.1063/1.1861375) DOI

Honeywell. Magnetic Displacement Sensors. Technical Report HMC 1501-1512. [cited 2022 Nov 11] Available from: https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/N61-2042-000-000_MDS_HMC15011512-ds.pdf.

Philips Semiconductors. 2000. Application Note, General Magnetoresistive Sensors for Magnetic Field Measurement, Technical Report KMZ10. [cited 2022 Nov 11] Available from: https://www.mikrocontroller.net/attachment/27041/SC17_GENERAL_MAG_2-1.pdf.

Adelerhof DJ, Geven W. 2000. New position detectors based on AMR sensors. Sens. Actuator A Phys. 85, 48. (10.1016/S0924-4247(00)00341-1) DOI

Murzin D, Mapps DJ, Levanda K, Belyaev V, Omelyanchik A, Panina L, Rodionova V. 2020. Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20, 1569. (10.3390/s20061569) PubMed DOI PMC

Hien LT, Quynh LK, Huyen VT, Tu BD, Hien NT, Phuong DM, Nhung PH, Giang DTH, Duc NH. 2016. DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor. Adv. Nat. Sci: Nanosci. Nanotechnol. 7, 045006. (10.1088/2043-6262/7/4/045006) DOI

Nabaei V, Chandrawati R, Heidari H. 2018. Magnetic biosensors: modelling and simulation. Biosens. Bioelectron. 103, 69. (10.1016/j.bios.2017.12.023) PubMed DOI

Hansen MF, Rizzi G. 2017. Exchange-biased AMR bridges for magnetic field sensing and biosensing. IEEE Trans. Magn. 53, 000211. (10.1109/TMAG.2016.2614012) DOI

Acuna MH. 2002. Space-based magnetometers. Rev. Sci. Instrum. 73, 3717. (10.1063/1.1510570) DOI

Brown P, Beek T, Carr C, O’Brien H, Cupido E, Oddy T, Horbury TS. 2012. Magnetoresistive magnetometer for space science applications. Meas. Sci. Technol. 23, 025902. (10.1088/0957-0233/23/2/025902) DOI

Archer MO, Horbury TS, Brown P, Eastwood JP, Oddy TM, Whiteside BJ, Sample JG. 2015. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer. Ann. Geophys. 33, 725. (10.5194/angeo-33-725-2015) DOI

Brown P, et al. 2014. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor. Rev. Sci. Instrum. 85, 125117. (10.1063/1.4904702) PubMed DOI

Včelak J, Ripka P, Kubik J, Platil A, Kašpar P. 2005. AMR navigation systems and methods of their calibration. Sens. Actuator A Phys. 123–124, 122. (10.1016/j.sna.2005.02.040) DOI

Mlejnek P, Vopalensky M, Ripka P. 2008. AMR current measurement device. Sens. Actuator A Phys. 141, 649. (10.1016/j.sna.2007.10.016) DOI

Bartok A, Daniel L, Razek A. 2013. A multiscale model for thin film AMR sensors. J. Magn. Magn. Mater. 326, 116. (10.1016/j.jmmm.2012.08.020) DOI

Schuhl A, Van Dau FN, Childress JR. 1995. Low-field magnetic sensors based on the planar Hall effect. Appl. Phys. Lett. 66, 2751. (10.1063/1.113697) DOI

Daughton JM. 1992. Magnetoresistive memory technology. Thin Solid Films 216, 162. (10.1016/0040-6090(92)90888-I) DOI

Heidecker J. 2013. MRAM technology status. JPL Publication 13-3. [cited 2022 Nov 11] Available from: https://ntrs.nasa.gov/api/citations/20140000668/downloads/20140000668.pdf.

Weinberger P. 2008. Race track memories seen from an ab initio point of view. Phys. Rev. Lett. 100, 017201. (10.1103/PhysRevLett.100.017201) PubMed DOI

Železný J. 2023. Why too much competition is bad for science. Nat. Phys. 19, 300. (10.1038/s41567-023-01970-3) DOI

Ritzinger P, Výborný K. 2023 Anisotropic magnetoresistance: materials, models and applications. Figshare. (10.6084/m9.figshare.c.6883923) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Non-relativistic torque and Edelstein effect in non-collinear magnets

. 2024 Sep 03 ; 15 (1) : 7663. [epub] 20240903

Anisotropic magnetoresistance in altermagnetic MnTe

. 2024 ; 2 (1) : 45. [epub] 20240813

Anisotropic magnetoresistance: materials, models and applications

. 2023 Oct ; 10 (10) : 230564. [epub] 20231018

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.6883923

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...