Anisotropic magnetoresistance: materials, models and applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37859834
PubMed Central
PMC10582618
DOI
10.1098/rsos.230564
PII: rsos230564
Knihovny.cz E-zdroje
- Klíčová slova
- anisotropic magnetoresistance, antiferromagnets, ferromagnets, resistance, sensors, transition metals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Resistance of certain (conductive and otherwise isotropic) ferromagnets turns out to exhibit anisotropy with respect to the direction of magnetization: R∥ for magnetization parallel to the electric current direction is different from R⊥ for magnetization perpendicular to the electric current direction. In this review, this century-old phenomenon is reviewed both from the perspective of materials and physical mechanisms involved. More recently, this effect has also been identified and studied in antiferromagnets. To date, sensors based on the anisotropic magnetoresistance (AMR) effect are widely used in different fields, such as the automotive industry, aerospace or in biomedical imaging.
Zobrazit více v PubMed
McGuire T, Potter T. 1975. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 18. (10.1109/TMAG.1975.1058782) DOI
Campbell IA, Fert A. 1982. Transport properties of ferromagnets. In Ferromagnetic materials, vol. 3 (ed. EP Wohlfarth), pp. 747–804. Amsterdam, The Netherlands: North-Holland Publishing Company.
O’Handley RC. 2000. Magnetic materials. Hoboken, NJ: John Wiley & Sons, Inc.
Isnaini VA, et al. 2020. Room-temperature magnetoresistance of nanocrystalline Ni metal with various grain sizes. Eur. Phys. J. Plus 135, 39. (10.1140/epjp/s13360-019-00067-2) DOI
Döring W. 1938. Die Abhängigkeit des Widerstandes von Nickelkristallen von der Richtung der spontanen Magnetisierung. Ann. Phys. 5, 259. (10.1002/andp.19384240306) DOI
De Ranieri E, et al. 2008. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New J. Phys. 10, 065003. (10.1088/1367-2630/10/6/065003) DOI
Thomson W. 1857. XIX. On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546. (10.1098/rspl.1856.0144) DOI
Thomlinson H. 1882. IV. The influence of stress and strain on the action of physical forces. Proc. R. Soc. Lond. 33, 276. (10.1098/rspl.1881.0108) DOI
Althammer M. 2012. Spin-transport-phenomena in metals, semiconductors, and insulators. PhD thesis, Technische Universität München, Munich, Germany.
Limmer W, et al. 2006. Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: application to (001)- and (113)A-oriented (Ga,Mn)As. Phys. Rev. B 74, 205205. (10.1103/PhysRevB.74.205205) DOI
Li J, Li SL, Wu ZW, Li S, Chu HF, Wang J, Zhang Y, Tian HY, Zheng DN. 2010. A phenomenological approach to the anisotropic magnetoresistance and planar Hall effect in tetragonal La2/3Ca1/3MnO3 thin films. J. Phys.: Condens. Matter 22, 146006. (10.1088/0953-8984/22/14/146006) PubMed DOI
Ritzinger P, et al. 2021. Anisotropic magnetothermal transport in Co2MnGa thin films. Phys. Rev. B 104, 094406. (10.1103/PhysRevB.104.094406) DOI
Zeng FL, et al. 2020. Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in CoxFe1−x single-crystal films. Phys. Rev. Lett. 125, 097201. (10.1103/PhysRevLett.125.097201) PubMed DOI
Kato T, Ishikawa Y, Itoh H, Inoue J. 2008. Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction. Phys. Rev. B 77, 233404. (10.1103/PhysRevB.77.233404) DOI
Nádvorník L, et al. 2021. Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions. Phys. Rev. X 11, 021030. (10.1103/PhysRevX.11.021030) DOI
Jaoul O, Campbell IA, Fert A. 1977. Spontaneous resistivity anisotropy in Ni alloys. J. Magn. Magn. Mater. 5, 23. (10.1016/0304-8853(77)90193-7) DOI
McGuire T, Aboaf J, Klokholm E. 1984. Negative anisotropic magnetoresistance in 3d metals and alloys containing iridium. IEEE Trans. Magn. 20, 5. (10.1109/TMAG.1984.1063188) DOI
Jen SU. 1992. Anisotropic magnetoresistance of Co-Pd alloys. Phys. Rev. B 45, 9819. (10.1103/PhysRevB.45.9819) PubMed DOI
Ishio S, Haga H, Shindo S, Saito H. 1999. Anisotropic magnetoresistance in Fe-Co-Ni alloys. J. Magn. Soc. Jpn 23, 427. (10.3379/jmsjmag.23.427) DOI
Berger L, Freitas PP, Warner JD, Schmidt JE. 1988. On the temperature dependence of the magnetoresistance of ferromagnetic alloys. J. Appl. Phys. 64, 5459. (10.1063/1.342347) DOI
Chakraborty S, Majumdar AK. 1998. Galvanomagnetic studies in γ − Ni100−x−yFexCry permalloys ( DOI
Dahlberg ED, Riggs K. 1988. Magnetotransport: an ideal probe of anisotropy energies in epitaxial films (invited). J. Appl. Phys. 63, 4270. (10.1063/1.340200) DOI
van Gorkom RP, Caro J, Klapwijk TM, Radelaar S. 2001. Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial Fe films. Phys. Rev. B 63, 134432. (10.1103/PhysRevB.63.134432) DOI
El-Tahawy M, et al. 2022. Anisotropic magnetoresistance (AMR) of cobalt: hcp-Co vs. fcc-Co. J. Magn. Magn. Mater. 560, 169660. (10.1016/j.jmmm.2022.169660) DOI
Bates LF. 1946. The magneto-resistance of high coercivity alloys. Proc. Phys. Soc. 58, 153. (10.1088/0959-5309/58/2/302) DOI
Mott NF. 1964. Electrons in transition metals. Adv. Phys. 13, 325. (10.1080/00018736400101041) DOI
Kokado S, Tsunoda M, Harigaya K, Sakuma A. 2012. Anisotropic magnetoresistance effects in Fe, Co, Ni, Fe4N, and half-metallic ferromagnet: a systematic analysis. J. Phys. Soc. Jpn 81, 024705. (10.1143/JPSJ.81.024705) DOI
Rushforth AW, et al. 2007. Anisotropic magnetoresistance components in (Ga,Mn)As. Phys. Rev. Lett. 99, 147207. (10.1103/PhysRevLett.99.147207) PubMed DOI
Výborný K, Kučera J, Sinova J, Rushforth AW, Gallagher BL, Jungwirth T. 2009. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As. Phys. Rev. B 80, 165204. (10.1103/PhysRevB.80.165204) DOI
Yang FJ, Sakuraba Y, Kokado S, Kota Y, Sakuma A, Takanashi K. 2012. Anisotropic magnetoresistance in Co2(Fe, Mn)Si Heusler epitaxial films: a fingerprint of half-metallicity. Phys. Rev. B 86, 020409(R). (10.1103/PhysRevB.86.020409) DOI
Sato T, Kokado S, Kosaka S, Ishikawa T, Ogawa T, Tsunoda M. 2018. Large negative anisotropic magnetoresistance in Co2MnGa Heusler alloy epitaxial thin films. Appl. Phys. Lett. 113, 112407. (10.1063/1.5047821) DOI
Sato T, Kokado S, Tsujikawa M, Ogawa T, Kosaka S, Shirai M, Tsunoda M. 2019. Signs of anisotropic magnetoresistance in Co2MnGa Heusler alloy epitaxial thin films based on current direction. Appl. Phys. Express 12, 103005. (10.7567/1882-0786/ab42b4) DOI
Miao Y, Yang D, Jia L, Li X, Yang S, Gaoa C, Xue D. 2021. Magnetocrystalline anisotropy correlated negative anisotropic magnetoresistance in epitaxial Fe30Co70 thin films. Appl. Phys. Lett. 118, 042404. (10.1063/5.0034232) DOI
Kabara K, Tsunoda M, Kokado S. 2017. Magneto-transport properties of pseudo-single-crystal Mn4N thin films. AIP Adv. 7, 056416. (10.1063/1.4974065) DOI
Yang FJ, Wei C, Chen XQ. 2013. Half-metallicity and anisotropic magnetoresistance of epitaxial Co2FeSi Heusler films. Appl. Phys. Lett. 102, 172403. (10.1063/1.4803537) DOI
Kabara K, Tsunoda M, Kokado S. 2016. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′ − Fe4N thin films. AIP Adv. 6, 055818. (10.1063/1.4943923) DOI
Ritzinger P. 2020. Magneto-thermo-galvanic measurements in magnetic thin-films. Master's thesis, Technische Universität Dresden, Dresden, Germany.
Zyuzin VA. 2021. Linear magnetoconductivity in magnetic metals. Phys. Rev. B 104, L140407. (10.1103/PhysRevB.104.L140407) DOI
Omori Y, Sagasta E, Niimi Y, Gradhand M, Hueso LE, Casanova F, Otani YC. 2019. Relation between spin Hall effect and anomalous Hall effect in 3d ferromagnetic metals. Phys. Rev. B 99, 014403. (10.1103/PhysRevB.99.014403) DOI
Pippard AB. 1989. Magnetoresistance in metals. Cambridge Studies in Low Temperature Physics Series, vol. 2. Cambridge, UK: Cambridge University Press.
Zhang SN, Wu QS, Liu Y, Yazyev OV. 2019. Magnetoresistance from Fermi surface topology. Phys. Rev. B 99, 035142. (10.1103/PhysRevB.99.035142) DOI
Bakonyi I, Czeschka FD, Isnaini VA, Krupp AT, Palotas K, Zsurzsa S, Peter L. 2022. High-field magnetoresistance of microcrystalline and nanocrystalline Ni metal at 3 K and 300 K. Eur. Phys. J. Plus 137, 871. (10.1140/epjp/s13360-022-03068-w) DOI
Sasmal S, Mukherjee J, Suri D, Raman KV. 2021. In-depth analysis of anisotropic magnetoconductance in Bi2Se3 thin films with electron–electron interaction corrections. J. Phys.: Condens. Matter 33, 465601. (10.1088/1361-648X/ac1de0) PubMed DOI
Bakonyi I. 2018. Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity. Eur. Phys. J. Plus 133, 521. (10.1140/epjp/i2018-12350-1) DOI
Ebert H, Vernes A, Banhart J. 1996. Anisotropic electrical resistivity of ferromagnetic Co-Pd and Co-Pt alloys. Phys. Rev. B 54, 8479. (10.1103/PhysRevB.54.8479) PubMed DOI
Stampe PA, Kunkel HP, Wang Z, Williams G. 1995. Influence of spin-orbit coupling on the transport and magnetic properties of Co3Pd97. Phys. Rev. B 52, 335. (10.1103/PhysRevB.52.335) PubMed DOI
Ziese M. 2000. Spontaneous resistivity anisotropy and band structure of La0.7Ca0.3MnO3 and Fe3O4 films. Phys. Rev. B 62, 1044. (10.1103/PhysRevB.62.1044) DOI
Alagoz HS, Desomberg J, Taheri M, Razavi FS, Chow KH, Jung J. 2015. Mechanism of sign crossover of the anisotropic magneto-resistance in La0.7−xPrxCa0.3MnO3 thin films. Appl. Phys. Lett. 106, 082407. (10.1063/1.4913875) DOI
Mizusaki S, Ohnishi T, Douzono A, Nagata Y, Ozawa TC, Samata H, Noro Y. 2009. Large anisotropic magnetoresistance of ruthenium-based Heusler alloy. J. Appl. Phys. 105, 07E513. (10.1063/1.3080561) DOI
Bolte M, Steiner M, Pels C, Barthelmeß M, Kruse J, Merkt U, Meier G, Holz M, Pfannkuche D. 2005. Magnetotransport through magnetic domain patterns in permalloy rectangles. Phys. Rev. B 72, 224436. (10.1103/PhysRevB.72.224436) DOI
Kriegner D, et al. 2016. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623. (10.1038/ncomms11623) PubMed DOI PMC
Stoner EC, Wohlfarth EP. 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 240, 826. (10.1098/rsta.1948.0007) DOI
Volný J, et al. 2020. Electrical transport properties of bulk tetragonal CuMnAs. Phys. Rev. Mater. 4, 064403. (10.1103/PhysRevMaterials.4.064403) DOI
Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S, Sauer R. 2008. Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers. Phys. Rev. B 77, 205210. (10.1103/PhysRevB.77.205210) DOI
Song C, You Y, Chen X, Zhou X, Wang Y, Pan F. 2018. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001. (10.1088/1361-6528/aaa812) PubMed DOI
Correa C A, Výborný K. 2018. Electronic structure and magnetic anisotropies of antiferromagnetic transition-metal difluorides. Phys. Rev. B 97, 235111. (10.1103/PhysRevB.97.235111) DOI
Liu J, Balents L. 2017. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202. (10.1103/PhysRevLett.119.087202) PubMed DOI
Bozorth RM. 1946. Magnetoresistance and domain theory of iron-nickel alloys. Phys. Rev. 70, 923. (10.1103/PhysRev.70.923) DOI
Birss RR. 1966. Symmetry and magnetism. Series of monographs on selected topics in solid state physics. Amsterdam, The Netherlands: North-Holland Pub. Co.
Badura A, et al. Submitted. Even-in-magnetic-field part of transverse resistivity as a quantitative probe of magnetic order: application to antiferromagnetic Mn5Si3.
Kokado S, Tsunoda M. 2015. Twofold and fourfold symmetric anisotropic magnetoresistance effect in a model with crystal field. J. Phys. Soc. Jpn. 84, 094710. (10.7566/JPSJ.84.094710) DOI
Kriegner D, et al. 2017. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418. (10.1103/PhysRevB.96.214418) DOI
Nam Hai P, Sasaki D, Duc Anh L, Tanaka M. 2012. Crystalline anisotropic magnetoresistance with two-fold and eight-fold symmetry in (In,Fe)As ferromagnetic semiconductor. Appl. Phys. Lett. 100, 262409. (10.1063/1.4730955) DOI
Terry I, Penney T, von Molnar S, Becla P. 1996. Low temperature magnetoresistance of the persistent photoconductor Cd0.9Mn0.1Te:In. J. Cryst. Growth 159, 1070. (10.1016/0022-0248(95)00695-8) DOI
Jungwirth T, Niu Q, MacDonald AH. 2002. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208. (10.1103/PhysRevLett.88.207208) PubMed DOI
Trushin M, Výborný K, Moraczewski P, Kovalev AA, Schliemann J, Jungwirth T. 2009. Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities. Phys. Rev. B 80, 134405. (10.1103/PhysRevB.80.134405) DOI
Výborný K, Kovalev AA, Sinova J, Jungwirth T. 2009. Semiclassical framework for the calculation of transport anisotropies. Phys. Rev. B 79, 045427. (10.1103/PhysRevB.79.045427) DOI
Ahn S, Das Sarma S. 2021. Screening, Friedel oscillations, RKKY interaction, and Drude transport in anisotropic two-dimensional systems. Phys. Rev. B 103, 165303. (10.1103/PhysRevB.103.165303) DOI
Smit J. 1951. Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica 16, 612. (10.1016/0031-8914(51)90117-6) DOI
Banhart J, Ebert H, Vernes A. 1997. Applicability of the two-current model for systems with strongly spin-dependent disorder. Phys. Rev. B 56, 10165. (10.1103/PhysRevB.56.10165) DOI
da Câmara Santa Clara Gomes T, Marchal N, Abreu Araujo F, Piraux L. 2019. Tunable magnetoresistance and thermopower in interconnected NiCr and CoCr nanowire networks. Appl. Phys. Lett. 115, 242402. (10.1063/1.5130718) DOI
Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald AH. 2006. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809. (10.1103/RevModPhys.78.809) DOI
Jungwirth T, Sinova J, Wang KY, Edmonds KW, Campion RP, Gallagher BL, Foxon CT, Niu Q, MacDonald AH. 2003. Dc-transport properties of ferromagnetic (Ga,Mn)As semiconductors. Appl. Phys. Lett. 83, 320. (10.1063/1.1590433) DOI
Trushin M, Castro Neto AH, Vignale G, Culcer D. 2019. Hidden anisotropy in the Drude conductivity of charge carriers with Dirac-Schrödinger dynamics. Phys. Rev. B 100, 035427. (10.1103/PhysRevB.100.035427) DOI
Kato T, Ishikawa Y, Itoh H, Inoue J. 2007. Magnetoresistance and Hall effect in spin-polarized two-dimensional electron gas with spin-orbit interaction. Phys. Stat. Sol. B 244, 4403-4406. (10.1002/pssb.200777260) DOI
Mott NF. 1936. The electrical conductivity of transition metals. Proc. R. Soc. A 153, 699. (10.1098/rspa.1936.0031) DOI
Banhart J, Ebert H. 1995. First-principles theory of spontaneous-resistance anisotropy and spontaneous Hall effect in disordered ferromagnetic alloys. Europhys. Lett. 32, 517. (10.1209/0295-5075/32/6/010) DOI
Ebert H, et al. 2011. Calculating condensed matter properties using the KKR-Green’s function method–recent developments and applications. Rep. Prog. Phys. 74, 096501. (10.1088/0034-4885/74/9/096501) DOI
Turek I, Kudrnovský J, Drchal V. 2012. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Phys. Rev. B 86, 014405. (10.1103/PhysRevB.86.014405) DOI
Khmelevskyi S, Palotás K, Szunyogh L, Weinberger P. 2003. Ab initio calculation of the anisotropic magnetoresistance in Ni1−cFec bulk alloys. Phys. Rev. B 68, 012402. (10.1103/PhysRevB.68.012402) DOI
Freitas PP, Berger L, Silvain JF. 1987. Anisotropic magnetoresistance of Co-Fe thin films. J. Appl. Phys. 61, 4385. (10.1063/1.338430) DOI
Šipr O, Wimmer S, Mankovsky S, Ebert H. 2020. Transport properties of doped permalloy via ab initio calculations: effect of host disorder. Phys. Rev. B 101, 085109. (10.1103/PhysRevB.101.085109) DOI
Vernes A, Ebert H, Banhart J. 2003. Electronic conductivity in NixCr1−x and NixCu1−x fcc alloy systems. Phys. Rev. B 68, 134404. (10.1103/PhysRevB.68.134404) DOI
Yin Y, et al. 2015. Tunable permalloy-based films for magnonic devices. Phys. Rev. B 92, 024427. (10.1103/PhysRevB.92.024427) DOI
Brito WH, Aguiar MCO, Haule K, Kotliar G. 2016. Metal-insulator transition in VO2: a DFT+DMFT perspective. Phys. Rev. Lett. 117, 056402. (10.1103/PhysRevLett.117.056402) PubMed DOI
Šmejkal L, Železný J, Sinova J, Jungwirth T. 2017. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402. (10.1103/PhysRevLett.118.106402) PubMed DOI
Yang H, et al. 2021. Colossal angular magnetoresistance in the antiferromagnetic semiconductor EuTe2. Phys. Rev. B 104, 214419. (10.1103/PhysRevB.104.214419) DOI
Rijks TGSM, Coehoorn R, de Jong MJM, de Jonge WJM. 1995. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys. Rev. B 51, 283. (10.1103/PhysRevB.51.283) PubMed DOI
Kimling J, Gooth J, Nielsch K. 2013. Anisotropic magnetothermal resistance in Ni nanowires. Phys. Rev. B 87, 094409. (10.1103/PhysRevB.87.094409) DOI
Xiao X, Li JX, Ding Z, Wu YZ. 2015. Four-fold symmetric anisotropic magnetoresistance of single-crystalline Ni(001) film. J. Appl. Phys. 118, 203905. (10.1063/1.4936175) DOI
Bakonyi I, Toth Kadar E, Toth J, Kiss LF, Pogany L, Cziraki A, Ulhaq-Bouillet C, Pierron-Bohnes V, Dinia A, Arnold B. 2002. Room temperature electronic transport properties of Co metal and Co(Ru) dilute alloys. Europhys. Lett. 58, 408. (10.1209/epl/i2002-00654-x) DOI
Xiao X, Liang JH, Chen BL, Li JX, Ma DH, Ding Z, Wu YZ. 2015. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films. J. Appl. Phys. 118, 043908. (10.1063/1.4927620) DOI
Miao Y, et al. 2020. Non-cosine square angular-dependent magnetoresistance of the face-centered-cubic Co thin films. J. Magn. Magn. Mater. 512, 167013. (10.1016/j.jmmm.2020.167013) DOI
Levy PM, Fert A. 2016. The longevity of Jacques Friedel’s model of the virtual bound state. C. R. Phys. 17, 447. (10.1016/j.crhy.2015.12.011) DOI
Miyazaki T, Oikawa M. 1991. Magnetoresistance of Ni-Fe-Co ternary alloy films. J. Magn. Magn. Mater. 97, 171. (10.1016/0304-8853(91)90177-C) DOI
Wang S, Gao T, Wang C, He J. 2013. Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J. Alloys Compd. 554, 405. (10.1016/j.jallcom.2012.12.004) DOI
Mašek J, et al. 2010. Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As. Phys. Rev. Lett. 105, 227202. (10.1103/PhysRevLett.105.227202) PubMed DOI
Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, Mielke CH. 2002. Anisotropic magnetoresistance in Ga1−xMnxAs. Phys. Rev. B 65, 212407. (10.1103/PhysRevB.65.212407) DOI
Wang KY, Edmonds KW, Campion RP, Zhao LX, Foxon CT, Gallagher BT. 2005. Anisotropic magnetoresistance and magnetic anisotropy in high-quality (Ga,Mn)As films. Phys. Rev. B 72, 085201. (10.1103/PhysRevB.72.085201) DOI
Miyakozawa S, Chen L, Matsukura F, Ohno H. 2016. Temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance in (Ga,Mn)As codoped with Li. Appl. Phys. Lett. 108, 112404. (10.1063/1.4944328) DOI
Howells B, Wang M, Edmonds KW, Wadley P, Campion RP, Rushforth AW, Foxon CT, Gallagher BL. 2013. Crystalline anisotropic magnetoresistance in quaternary ferromagnetic semiconductor (Ga,Mn)(As,Sb). Appl. Phys. Lett. 102, 052407. (10.1063/1.4791580) DOI
Wang W, Chen J, Deng J, Che J, Hu B, Cheng X. 2019. Effect of Sb content on anisotropic magnetoresistance in a (Ga, Mn)(As, Sb) ferromagnetic semiconductor thin film. RSC Adv. 9, 10776-10780. (10.1039/c8ra10256b) PubMed DOI PMC
Jungwirth T, Abolfath M, Sinova J, Kučera J, MacDonald AH. 2002. Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As. Appl. Phys. Lett. 81, 4029. (10.1063/1.1523160) DOI
Jungwirth T, et al. 2005. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B 72, 165204. (10.1103/PhysRevB.72.165204) DOI
Shapira Y, Vu TQ. 1990. Magnetoresistance and Hall effect near the metal-insulator transition of n-type Cd0.95Mn0.05Te. Phys. Rev. B 41, 5931. (10.1103/PhysRevB.41.5931) PubMed DOI
Navarro-Quezada A, Aiglinger M, Faina B, Gas K, Matzer M, Li T, Adhikari R, Sawicki M, Bonanni A. 2019. Magnetotransport in phase-separated (Ga,Fe)N with γ′ − GayFe4−yN nanocrystals. Phys. Rev. B 99, 085201. (10.1103/PhysRevB.99.085201) DOI
Lee JS, Richardella A, Rench DW, Fraleigh RD, Flanagan TC, Borchers JA, Tao J, Samarth N. 2014. Ferromagnetism and spin-dependent transport in n-type Mn-doped bismuth telluride thin films. Phys. Rev. B 89, 174425. (10.1103/PhysRevB.89.174425) DOI
Dyck JS, Drašar Č, Lošt’ák P, Uher C. 2005. Low-temperature ferromagnetic properties of the diluted magnetic semiconductor Sb2−xCrxTe3. Phys. Rev. B 71, 115214. (10.1103/PhysRevB.71.115214) DOI
Lee JW, Kuroda S, Takano F, Akinaga H, Takita K. 2006. Anisotropy of magnetization and magnetoresistance of (Zn,Co)O films grown by pulsed laser deposition. Phys. Stat. Sol. (c) 3, 4098. (10.1002/pssc.200672872) DOI
Khalid M, Esquinazi P. 2012. Hydrogen-induced ferromagnetism in ZnO single crystals investigated by magnetotransport. Phys. Rev. B 85, 134424. (10.1103/PhysRevB.85.134424) DOI
Landau LD. 1933. A possible explanation of the field dependence of the susceptibility at low temperatures. Phys. Z. Sowjet. 4, 675. (10.1016/B978-0-08-010586-4.50017-1) DOI
Fina I, et al. 2014. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671. (10.1038/ncomms5671) PubMed DOI
Wang C, Seinige H, Cao G, Zhou J-S, Goodenough JB, Tsoi M. 2014. Anisotropic magnetoresistance in antiferromagnetic Sr2IrO4. Phys. Rev. X 4, 041034. (10.1103/PhysRevX.4.041034) DOI
Marti X, et al. 2014. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367. (10.1038/nmat3861) PubMed DOI
Kudrnovský J, Drchal V, Turek I. 2015. Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition. Phys. Rev. B 91, 014435. (10.1103/PhysRevB.91.014435) DOI
Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y. 2018. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005. (10.1103/RevModPhys.90.015005) DOI
Wadley P, et al. 2016. Electrical switching of an antiferromagnet. Science 351, 6273. (10.1126/science.aab1031) PubMed DOI
Zubáč J, Kašpar Z, Krizek F, Förster T, Campion RP, Novák V, Jungwirth T, Olejník K. 2021. Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Rev. B 104, 184424. (10.1103/PhysRevB.104.184424) DOI
Emmanouilidou E, Cao H, Tang P, Gui X, Hu C, Shen B, Wu J, Zhang S-C, Xie W, Ni N. 2017. Magnetic order induces symmetry breaking in the single-crystalline orthorhombic CuMnAs semimetal. Phys. Rev. B 96, 224405. (10.1103/PhysRevB.96.224405) DOI
Bodnar SY, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik AA, Elmers H-J, Kläui M, Jourdan M. 2018. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348. (10.1038/s41467-017-02780-x) PubMed DOI PMC
Kabara K, Tsunoda M, Kokado S. 2014. Annealing effects on nitrogen site ordering and anisotropic magnetoresistance in pseudo-single-crystal γ′-Fe4N films. Appl. Phys. Express 7, 063003. (10.7567/APEX.7.063003) DOI
Manna K, Sun Y, Muechler L, Kübler J, Felser C. 2018. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244-256. (10.1038/s41578-018-0036-5) DOI
Heusler F. 1903. Über magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 5, 219.
Breidenbach AT, Yu H, Peterson TA, McFadden AP, Peria WK, Palmstrøm CJ, Crowell PA. 2022. Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl. Phys. Rev. B 105, 144405. (10.1103/PhysRevB.105.144405) DOI
Sakuraba Y, Kokado S, Hirayama Y, Furubayashi T, Sukegawa H, Li S, Takahashi YK, Hono K. 2014. Quantitative analysis of anisotropic magnetoresistance in Co2MnZ and Co2FeZ epitaxial thin films: a facile way to investigate spin-polarization in half-metallic Heusler compounds. Appl. Phys. Lett. 104, 172407. (10.1063/1.4874851) DOI
Yako H, Kubota T, Takanashi K. 2015. Anisotropic magnetoresistance effect in Co2(Fe–Mn)(Al–Si) Heusler alloy thin film. IEEE Trans. Magn. 51, 11. (10.1109/TMAG.2015.2439284) DOI
Oogane M, McFadden AP, Kota Y, Brown-Heft TL, Tsunoda M, Ando Y, Palmstrøm CJ. 2018. Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films. Jpn. J. Appl. Phys. 57, 063001. (10.7567/JJAP.57.063001) DOI
Felser C, Hirohata A. 2016. Heusler alloys: properties, growth, applications. Cham, Switzerland: Springer.
Ciccarelli C. 2016. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855. (10.1038/nphys3772) DOI
Ohtomo A, Hwang HY. 2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423. (10.1038/nature02308) PubMed DOI
Shalom MB, Tai CW, Lereah Y, Sachs M, Levy E, Rakhmilevitch D, Palevski A, Dagan Y. 2009. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403(R). (10.1103/PhysRevB.80.140403) DOI
Reyren N, et al. 2007. Superconducting interfaces between insulating oxides. Science 317, 1196. (10.1126/science.1146006) PubMed DOI
Huijben M, Brinkman A, Koster G, Rijnders G, Hilgenkamp H, Blank DHA. 2009. Structure–property relation of SrTiO3/LaAlO3 interfaces. Adv. Mater. 21, 1665. (10.1002/adma.200801448) DOI
Lebedev N, Stehno M, Rana A, Gauquelin N, Verbeeck J, Brinkman A, Aarts J. 2020. Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO3/SrTiO3 interfaces. J. Phys.: Condens. Matter 33, 055001. (10.1088/1361-648X/abc102) PubMed DOI
Boschker H, Mannhart J. 2017. Quantum-matter heterostructures. Annu. Rev. Condens. Matter Phys. 8, 145-64. (10.1146/annurev-conmatphys-031016-025404) DOI
Li T, Zhang L, Hong X. 2022. Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials. J. Vac. Sci. Technol. A 40, 010807. (10.1116/6.0001443) DOI
Bovenzi N, Diez M. 2017. Semiclassical theory of anisotropic transport at LaAlO3/SrTiO3 interfaces under an in-plane magnetic field. Phys. Rev. B 95, 205430. (10.1103/PhysRevB.95.205430) DOI
Ariando WX, et al. 2011. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2, 188. (10.1038/ncomms1192) PubMed DOI
Joshua A, Ruhman J, Pecker S, Altman E, Ilani S. 2013. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633. (10.1073/pnas.1221453110) PubMed DOI PMC
Rout PK, Agireen I, Maniv E, Goldstein M, Dagan Y. 2017. Six-fold crystalline anisotropic magnetoresistance in the (111) LaAlO3/SrTiO3 oxide interface. Phys. Rev. B 95, 241107(R). (10.1103/PhysRevB.95.241107) DOI
Miao L, Du R, Yin Y, Li Q. 2016. Anisotropic magneto-transport properties of electron gases at SrTiO3 (111) and (110) surfaces. Appl. Phys. Lett. 109, 261604. (10.1063/1.4972985) DOI
Harsan Ma H, Zhou J, Yang M, Liu Y, Zeng SW, Zhou WX, Zhang LC, Venkatesan T, Feng YP, Ariando. 2017. Giant crystalline anisotropic magnetoresistance in nonmagnetic perovskite oxide heterostructures. Phys. Rev. B 95, 155314. (10.1103/PhysRevB.95.155314) DOI
Boudjada N, Khait I, Paramekanti A. 2019. Anisotropic magnetoresistance in multiband systems: two-dimensional electron gases and polar metals at oxide interfaces. Phys. Rev. B 99, 195453. (10.1103/PhysRevB.99.195453) DOI
Wadehra N, Tomar R, Varma RM, Gopal RK, Singh Y, Dattagupta S, Chakraverty S. 2020. Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling. Nat. Commun. 11, 874. (10.1038/s41467-020-14689-z) PubMed DOI PMC
Tomar R, Kakkar S, Bera C, Chakraverty S. 2021. Anisotropic magnetoresistance and planar Hall effect in (001) and (111) LaVO3 / SrTiO3 heterostructures. Phys. Rev. B 103, 115407. (10.1103/PhysRevB.103.115407) DOI
Chen Y, et al. 2015. Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface. Nano Lett. 15, 1849. (10.1021/nl504622w) PubMed DOI
Granada M, Bustingorry S, Pontello DE, Barturen M, Eddrief M, Marangolo M, Milano J. 2016. Magnetotransport properties of Fe0.8Ga0.2 films with stripe domains. Phys. Rev. B 94, 184435. (10.1103/PhysRevB.94.184435) DOI
Philippi-Kobs A, Farhadi A, Matheis L, Lott D, Chuvilin A, Oepen HP. 2019. Impact of symmetry on anisotropic magnetoresistance in textured ferromagnetic thin films. Phys. Rev. Lett. 123, 137201. (10.1103/PhysRevLett.123.137201) PubMed DOI
Hupfauer T, Matos-Abiague A, Gmitra M, Schiller F, Loher J, Bougeard D, Back CH, Fabian J, Weiss D. 2015. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat. Commun. 6, 7374. (10.1038/ncomms8374) PubMed DOI PMC
Shi X, Li X, Lai Z, Liu X, Mi W. 2020. Structure, magnetic and electronic transport properties in antiperovskite cubic γ′-CuFe3N polycrystalline films. Intermetallics 121, 106779. (10.1016/j.intermet.2020.106779) DOI
Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C-C, Takahashi M. 2009. Negative anisotropic magnetoresistance in Fe4N Film. Appl. Phys. Express 2, 083001. (10.1143/APEX.2.083001) DOI
Tsunoda M, Takahashi H, Kokado S, Komasaki Y, Sakuma A, Takahashi M. 2010. Anomalous anisotropic magnetoresistance in pseudo-single-crystal γ′-Fe4N Films. Appl. Phys. Express 3, 113003. (10.1143/APEX.3.113003) DOI
Klein L, Marshall AF, Reiner JW, Ahn CH, Geballe TH, Beasley MR, Kapitulnik A. 1998. Large magnetoresistance of single-crystal films of ferromagnetic SrRuO3. J. Magn. Magn. Mater. 188, 319. (10.1016/S0304-8853(98)00201-7) DOI
Herranz G, Sanchez F, Garcia-Cuenca MV, Ferrater C, Varela M, Martinez B, Fontcuberta J. 2004. Anisotropic magnetoresistance in SrRuO3 ferromagnetic oxide. J. Magn. Magn. Mater. 272–276, 517. (10.1016/j.jmmm.2003.12.1050) DOI
Rao RA, Kacedon DB, Eom CB. 1998. Anisotropic magnetotransport properties of epitaxial thin films of conductive ferromagnetic oxide SrRuO3. J. Appl. Phys. 83, 6995. (10.1063/1.367674) DOI
Haham N, Shperber Y, Reiner JW, Klein L. 2013. Low-temperatrure anisotropic magnetoresistance and planar Hall effect in SrRuO3. Phys. Rev. B. 87, 144407. (10.1103/PhysRevB.87.144407) DOI
Chaurasia R, Asokan K, Kumar K, Pramanik AK. 2021. Low-temperature ferromagnetism in perovskite SrIrO3 films. Phys. Rev. B 103, 064418. (10.1103/PhysRevB.103.064418) DOI
Zeng Z, Greenblatt M, Croft M. 1999. Large magnetoresistance in antiferromagnetic CaMnO3−δ. Phys. Rev. B 59, 8784. (10.1103/PhysRevB.59.8784) DOI
Li X, et al. 2021. Charge disproportionation and complex magnetism in a PbMnO3 perovskite synthesized under high pressure. Chem. Mater. 33, 92-101. (10.1021/acs.chemmater.0c02706) DOI
Bibes M, Laukhin V, Valencia S, Martinez B, Fontcuberta J, Gorbenko OY, Kaul AR, Martinez JL. 2005. Anisotropic magnetoresistance and anomalous Hall effect in manganite thin films. J. Phys.: Condens. Matter 17, 2733. (10.1088/0953-8984/17/17/022) DOI
O’Donnell J, Eckstein JN, Rzchowski MS. 2000. Temperature and magnetic field dependent transport anisotropies in La0.7Ca0.3MnO3 films. Appl. Phys. Lett. 76, 218. (10.1063/1.125707) DOI
Yang S, Chen Q, Yang Y, Gao Y, Xu R, Zhang H, Ma J. 2021. Silver addition in polycrystalline La0.7Ca0.3MnO3: large magnetoresistance and anisotropic magnetoresistance for manganite sensors. J. Alloys Compd. 882, 160719. (10.1016/j.jallcom.2021.160719) DOI
Sharma H, Tulapurkar A, Tomy CV. 2014. Sign reversal of anisotropic magnetoresistance in La0.7Ca0.3MnO3/SrTiO3 ultrathin films. Appl. Phys. Lett. 105, 222406. (10.1063/1.4903236) DOI
Xie Y, Yang H, Liu Y, Yang Z, Chen B, Zuo Z, Katlakunta S, Zhan Q, Li R-W. 2013. Strain induced tunable anisotropic magnetoresistance in La0.67Ca0.33MnO3/BaTiO3 heterostructures. J. Appl. Phys. 113, 17C716. (10.1063/1.4795841) DOI
Kandpal LM, Singh S, Kumar P, Siwach PK, Gupta A, Awana VPS, Singh HK. 2016. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films. J. Magn. Magn. Mater. 408, 60. (10.1016/j.jmmm.2016.02.022) DOI
Wong AT, Beekman C, Guo H, Siemons W, Gai Z, Arenholz E, Takamura Y, Ward TZ. 2014. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3. Appl. Phys. Lett. 105, 052401. (10.1063/1.4892420) DOI
Infante IC, Laukhin V, Sanchez F, Fotcuberta J, Melnikov O, Gorbenko OY, Kaul AR. 2006. Anisotropic magnetoresistance in epitaxial (110) manganite films. J. Appl. Phys. 99, 08C502. (10.1063/1.2150812) DOI
Kumar P, Prasad R, Dwivedi RK, Singh HK. 2011. Out-of-plane low field anisotropic magnetoresistance in Nd0.51Sr0.49MnO3 thin films. J. Magn. Magn. Mater. 323, 2564. (10.1016/j.jmmm.2011.05.032) DOI
Chen YZ, Sun JR, Zhao TY, Wang J, Wang ZH, Shen BG, Pryds N. 2009. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films. Appl. Phys. Lett. 95, 132506. (10.1063/1.3240407) DOI
Egilmez M, Saber MM, Mansour AI, Ma R, Chow KH, Jung J. 2008. Dramatic strain induced modification of the low field anisotropic magnetoresistance in ultrathin manganite films. Appl. Phys. Lett. 93, 182505. (10.1063/1.3021083) DOI
Li P, Jin C, Jiang EY, Bai HL. 2010. Origin of the twofold and fourfold symmetric anisotropic magnetoresistance in epitaxial Fe3O4 films. J. Appl. Phys. 108, 093921. (10.1063/1.3499696) DOI
Bai H, et al. 2022. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202. (10.1103/PhysRevLett.128.197202) PubMed DOI
Polesya S, Mankovsky S, Ebert H, Neumov PG, ElGhazali MA, Schnelle W, Medvedev S, Mangelsen S, Bensch W. 2020. Mn1/4NbS2: magnetic and magnetotransport properties at ambient pressure and ferro- to antiferromagnetic transition under pressure. Phys. Rev. B 102, 174423. (10.1103/PhysRevB.102.174423) DOI
Hardy WJ, Chen C-W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E. 2015. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 91, 054426. (10.1103/PhysRevB.91.054426) DOI
Zhang H, et al. 2018. Electrical and anisotropic magnetic properties in layered Mn1/3TaS2 crystals. Appl. Phys. Lett. 113, 072402. (10.1063/1.5034502) DOI
Mayoh DA, Bouaziz J, Hall AE, Staunton JB, Lees MR, Balakrishnan G. 2022. Giant topological and planar Hall effect in Cr1/3NbS2. Phys. Rev. Res. 4, 013134. (10.1103/PhysRevResearch.4.013134) DOI
Kar I, Routh S, Ghorai S, Purwar S, Thirupathaiah S. 2023. Observation of weak Kondo effect and angle dependent magnetoresistance in layered antiferromagnetic V5S8 single crystals. Solid State Commun. 369, 115209. (10.1016/j.ssc.2023.115209) DOI
Fang D, Kurebayashi H, Wunderlich J, Výborný K, Zarbo LP, Campion RP, Casiraghi A, Gallagher BL, Jungwirth T, Ferguson AJ. 2011. Spin–orbit-driven ferromagnetic resonance. Nat. Nanotechnol. 6, 413. (10.1038/nnano.2011.68) PubMed DOI
Manchon A, Železný J, Miron IM, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P. 2019. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004. (10.1103/RevModPhys.91.035004) DOI
Mellnik AR, et al. 2014. Spin-transfer torque generated by a topological insulator. Nature 511, 449. (10.1038/nature13534) PubMed DOI
Booth K, Gray I, Dahlberg ED. 2021. Determining the AC susceptibility of thin metal films using the anisotropic magnetoresistance. J. Magn. Magn. Mater. 523, 167631. (10.1016/j.jmmm.2020.167631) DOI
Pignard S, Goglio G, Radulescu A, Piraux L, Dubois S, Declemy A, Duvail JL. 2002. Study of the magnetization reversal in individual nickel nanowires. J. Appl. Phys. 87, 824. (10.1063/1.371947) DOI
Wegrowe J-E, Kelly D, Franck A, Gilbert SE, Ansermet J-P. 1999. Magnetoresistance of ferromagnetic nanowires. Phys. Rev. Lett. 82, 3681. (10.1103/PhysRevLett.82.3681.) DOI
Rheem Y, Yoo B-Y, Beyermann WP, Myung NV. 2006. Magnetotransport studies of a single nickel nanowire. Nanotechnology 18, 015202. (10.1088/0957-4484/18/1/015202) PubMed DOI
Hayashi M, Thomas L, Rettner C, Moriya R, Jiang X, Parkin SP. 2006. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205. (10.1103/PhysRevLett.97.207205) PubMed DOI
Nam Hai P, Duc Anh L, Tanaka M. 2012. Electron effective mass in n-type electron-induced ferromagnetic semiconductor (In,Fe)As: evidence of conduction band transport. Appl. Phys. Lett. 101, 252410. (10.1063/1.4772630) DOI
Campbell IA, Fert A, Jaoul O. 1970. The spontaneous resistivity anisotropy in Ni-based alloys. J. Phys. C 3, S95. (10.1088/0022-3719/3/1S/310) DOI
Berger L. 2011. Spin relaxation in metallic ferromagnets. Phys. Rev. B 83, 054410. (10.1103/PhysRevB.83.054410) DOI
Narayanapillai K, Gopinadhan K, Qiu X, Annadi A, Yang H. 2014. Current-driven spin orbit field in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 105, 162405. (10.1063/1.4899122) DOI
Feng Z, et al. 2012. Spin Hall angle quantification from spin pumping and microwave photoresistance. Phys. Rev. B 85, 214423. (10.1103/PhysRevB.85.214423) DOI
Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A. 2010. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601. (10.1103/PhysRevLett.104.046601) PubMed DOI
Xing X, et al. . 2018. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a ‘parent’ compound of 112-type iron pnictide superconductors. J. Phys.: Condens. Matter 30, 025701. (10.1088/1361-648X/aa9c11) PubMed DOI
Park J-H, et al. 2021. Temperature dependence of intrinsic and extrinsic contributions to anisotropic magnetoresistance. Sci. Rep. 11, 20884. (10.1038/s41598-021-00374-8) PubMed DOI PMC
Tesařová N, et al. 2014. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203. (10.1103/PhysRevB.89.085203) DOI
Silber R, et al. 2019. Quadratic magneto-optic Kerr effect spectroscopy of Fe epitaxial films on MgO(001) substrates. Phys. Rev. B 100, 064403. (10.1103/PhysRevB.100.064403) DOI
Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K, Felser C. 2007. Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2FeSi Heusler compound. J. Phys. D: Appl. Phys. 40, 1563. (10.1088/0022-3727/40/6/S09) DOI
Valencia S, Kleibert A, Gaupp A, Rusz J, Legut D, Bansmann J, Gudat W, Oppeneer PM. 2010. Quadratic X-ray magneto-optical effect upon reflection in a near-normal-incidence configuration at the M edges of 3d-transition metals. Phys. Rev. Lett. 104, 187401. (10.1103/PhysRevLett.104.187401) PubMed DOI
Zink BL. 2022. Thermal effects in spintronic materials and devices: an experimentalist’s guide. J. Magn. Magn. Mater. 564, 170120. (10.1016/j.jmmm.2022.170120) DOI
Slachter A, Bakker FL, van Wees BJ. 2011. Modeling of thermal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 174408. (10.1103/PhysRevB.84.174408) DOI
Wegrowe J-E, Drouhin H-J, Lacour D. 2014. Anisotropic magnetothermal transport and spin Seebeck effect. Phys. Rev. B 89, 094409. (10.1103/PhysRevB.89.094409) DOI
Jungwirth T, Wunderlich J, Novák V, Olejník K, Gallagher BL, Campion RP, Edmonds KW, Rushforth AW, Ferguson AJ, Němec P. 2014. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 86, 855. (10.1103/RevModPhys.86.855) DOI
Heikkilä TT, Hatami M, Bauer GEW. 2010. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408(R). (10.1103/PhysRevB.81.100408) DOI
Corliss LM, Elliott N, Hastings JM, Sass RL. 1961. Magnetic structure of chromium selenide. Phys. Rev. 122, 1402. (10.1103/PhysRev.122.1402) DOI
Shindou R, Nagaosa N. 2001. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801. (10.1103/PhysRevLett.87.116801) PubMed DOI
Chen H, Niu Q, MacDonald AH. 2014. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205. (10.1103/PhysRevLett.112.017205) PubMed DOI
Qin P, et al. 2020. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano 14, 6242. (10.1021/acsnano.0c02325) PubMed DOI
Xiaoning W, et al. 2019. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 181, 537. (10.1016/j.actamat.2019.10.020) DOI
Zemen J, Kučera J. 2009. Magnetocrystalline anisotropies in (Ga, Mn) As: systematic theoretical study and comparison with experiment. Phys. Rev. B 80, 155203. (10.1103/PhysRevB.80.155203) DOI
Velev J, Sabirianov RF, Jaswal SS, Tsymbal EY. 2005. Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203. (10.1103/PhysRevLett.94.127203) PubMed DOI
Hu C, Teng J, Yu G, Lu W, Ji W. 2015. Conditions for quantized anisotropic magnetoresistance. Phys. Rev. B 91, 045438. (10.1103/PhysRevB.91.045438) DOI
Zhao C-J, Lei D, Jia-Shun HF, Jing-Yan Z, Guang-Hua Y. 2013. Research progress in anisotropic magnetoresistance. Rare Met. 32, 213. (10.1007/s12598-013-0090-5) DOI
Autës G, Barreteau C, Spanjaard D, Desjonquëres M-C. 2008. Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries. Phys. Rev. B 77, 155437. (10.1103/PhysRevB.77.155437) DOI
Moodera JS, Kinder LR, Wong TM, Meservey R. 1995. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273. (10.1103/PhysRevLett.74.3273) PubMed DOI
Julliere M. 1975. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225. (10.1016/0375-9601(75)90174-7) DOI
Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. 2004. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203. (10.1103/PhysRevLett.93.117203) PubMed DOI
Schöneberg J, Ferriani P, Heinze S, Weismann A, Berndt R. 2018. Tunneling anisotropic magnetoresistance via molecular π orbitals of Pb dimers. Phys. Rev. B 97, 041114. (10.1103/PhysRevB.97.041114) DOI
Kandala A, Richardella A, Kempinger S, Liu C-X, Samarth N. 2015. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434. (10.1038/ncomms8434) PubMed DOI PMC
Liu J, Cornelissen LJ, Shan J, Kuschel T, van Wees BJ. 2017. Magnon planar Hall effect and anisotropic magnetoresistance in a magnetic insulator. Phys. Rev. B 95, 140402(R). (10.1103/PhysRevB.95.140402) DOI
Geprägs S, et al. 2020. Static magnetic proximity effect and spin Hall magnetoresistance in Pt/Y3Fe5O12 and inverted Y3Fe5O12/Pt bilayers. Phys. Rev. B 102, 214438. (10.1103/PhysRevB.102.214438) DOI
Lin T, Tang C, Alyahayaei HM, Shi J. 2014. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures. Phys. Rev. Lett. 113, 037203. (10.1103/PhysRevLett.113.037203) PubMed DOI
Sklenar J, et al. 2021. Proximity-induced anisotropic magnetoresistance in magnetized topological insulators. Appl. Phys. Lett. 118, 232402. (10.1063/5.0052301) DOI
Yang SR, Fanchiang YT, Chen CC, Tseng CC, Liu YC, Guo MX, Hong M, Lee SF, Kwo J. 2019. Evidence for exchange Dirac gap in magnetotransport of topological insulator-magnetic insulator heterostructures. Phys. Rev. B 100, 045138. (10.1103/PhysRevB.100.045138) DOI
Stutzke NA, Russek SE, Pappas DP, Tondra M. 2005. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 97, 10Q107. (10.1063/1.1861375) DOI
Honeywell. Magnetic Displacement Sensors. Technical Report HMC 1501-1512. [cited 2022 Nov 11] Available from: https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/N61-2042-000-000_MDS_HMC15011512-ds.pdf.
Philips Semiconductors. 2000. Application Note, General Magnetoresistive Sensors for Magnetic Field Measurement, Technical Report KMZ10. [cited 2022 Nov 11] Available from: https://www.mikrocontroller.net/attachment/27041/SC17_GENERAL_MAG_2-1.pdf.
Adelerhof DJ, Geven W. 2000. New position detectors based on AMR sensors. Sens. Actuator A Phys. 85, 48. (10.1016/S0924-4247(00)00341-1) DOI
Murzin D, Mapps DJ, Levanda K, Belyaev V, Omelyanchik A, Panina L, Rodionova V. 2020. Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20, 1569. (10.3390/s20061569) PubMed DOI PMC
Hien LT, Quynh LK, Huyen VT, Tu BD, Hien NT, Phuong DM, Nhung PH, Giang DTH, Duc NH. 2016. DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor. Adv. Nat. Sci: Nanosci. Nanotechnol. 7, 045006. (10.1088/2043-6262/7/4/045006) DOI
Nabaei V, Chandrawati R, Heidari H. 2018. Magnetic biosensors: modelling and simulation. Biosens. Bioelectron. 103, 69. (10.1016/j.bios.2017.12.023) PubMed DOI
Hansen MF, Rizzi G. 2017. Exchange-biased AMR bridges for magnetic field sensing and biosensing. IEEE Trans. Magn. 53, 000211. (10.1109/TMAG.2016.2614012) DOI
Acuna MH. 2002. Space-based magnetometers. Rev. Sci. Instrum. 73, 3717. (10.1063/1.1510570) DOI
Brown P, Beek T, Carr C, O’Brien H, Cupido E, Oddy T, Horbury TS. 2012. Magnetoresistive magnetometer for space science applications. Meas. Sci. Technol. 23, 025902. (10.1088/0957-0233/23/2/025902) DOI
Archer MO, Horbury TS, Brown P, Eastwood JP, Oddy TM, Whiteside BJ, Sample JG. 2015. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer. Ann. Geophys. 33, 725. (10.5194/angeo-33-725-2015) DOI
Brown P, et al. 2014. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor. Rev. Sci. Instrum. 85, 125117. (10.1063/1.4904702) PubMed DOI
Včelak J, Ripka P, Kubik J, Platil A, Kašpar P. 2005. AMR navigation systems and methods of their calibration. Sens. Actuator A Phys. 123–124, 122. (10.1016/j.sna.2005.02.040) DOI
Mlejnek P, Vopalensky M, Ripka P. 2008. AMR current measurement device. Sens. Actuator A Phys. 141, 649. (10.1016/j.sna.2007.10.016) DOI
Bartok A, Daniel L, Razek A. 2013. A multiscale model for thin film AMR sensors. J. Magn. Magn. Mater. 326, 116. (10.1016/j.jmmm.2012.08.020) DOI
Schuhl A, Van Dau FN, Childress JR. 1995. Low-field magnetic sensors based on the planar Hall effect. Appl. Phys. Lett. 66, 2751. (10.1063/1.113697) DOI
Daughton JM. 1992. Magnetoresistive memory technology. Thin Solid Films 216, 162. (10.1016/0040-6090(92)90888-I) DOI
Heidecker J. 2013. MRAM technology status. JPL Publication 13-3. [cited 2022 Nov 11] Available from: https://ntrs.nasa.gov/api/citations/20140000668/downloads/20140000668.pdf.
Weinberger P. 2008. Race track memories seen from an ab initio point of view. Phys. Rev. Lett. 100, 017201. (10.1103/PhysRevLett.100.017201) PubMed DOI
Železný J. 2023. Why too much competition is bad for science. Nat. Phys. 19, 300. (10.1038/s41567-023-01970-3) DOI
Ritzinger P, Výborný K. 2023 Anisotropic magnetoresistance: materials, models and applications. Figshare. (10.6084/m9.figshare.c.6883923) PubMed DOI PMC
Non-relativistic torque and Edelstein effect in non-collinear magnets
Anisotropic magnetoresistance in altermagnetic MnTe
Anisotropic magnetoresistance: materials, models and applications
figshare
10.6084/m9.figshare.c.6883923