Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29367633
PubMed Central
PMC5783935
DOI
10.1038/s41467-017-02780-x
PII: 10.1038/s41467-017-02780-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn2Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn2Au(001) thin films were generated by pulse current densities of ≃107 A/cm2. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.
Institut für Physik Johannes Gutenberg Universität Staudinger Weg 7 55128 Mainz Germany
School of Physics and Astronomy University of Nottingham University Park Nottingham NG7 2RD UK
Zobrazit více v PubMed
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotech. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Kampfrath T, et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics. 2011;5:31–34. doi: 10.1038/nphoton.2010.259. DOI
Železný J, et al. Relativistic Neel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Park BG, et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 2011;10:347–351. doi: 10.1038/nmat2983. PubMed DOI
Fina I, et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 2014;5:4671. doi: 10.1038/ncomms5671. PubMed DOI
Marti X, et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014;13:367–374. doi: 10.1038/nmat3861. PubMed DOI
Gambardella P, Miron IM. Current-induced spin-orbit torques. Philos. Trans. R. Soc. A. 2011;369:3175–3197. doi: 10.1098/rsta.2010.0336. PubMed DOI
Brataas A, Hals KMD. Spin-orbit torques in action. Nat. Nanotech. 2014;9:86–88. doi: 10.1038/nnano.2014.8. PubMed DOI
Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Barthem VMTS, Colin CV, Mayaffre H, Julien MH, Givord D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun. 2013;4:2892. doi: 10.1038/ncomms3892. PubMed DOI
Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B. 2010;81:212409. doi: 10.1103/PhysRevB.81.212409. DOI
Barthem VMTS, et al. Easy moment direction and antiferromagnetic domain wall motion in Mn2Au. J. Magn. Magn. Mater. 2016;406:289–292. doi: 10.1016/j.jmmm.2015.07.101. DOI
Han-Chun W, et al. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy. Adv. Mat. 2012;24:6374–6379. doi: 10.1002/adma.201202273. PubMed DOI
Han-Chun W, et al. Anomalous anisotropic magnetoresistance of antiferromagnetic epitaxial bimetallic films: Mn2Au and Mn2Au/Fe bilayers. Adv. Funct. Mat. 2016;26:5884–5892. doi: 10.1002/adfm.201601348. DOI
Jourdan M, et al. Epitaxial Mn2Au thin films for antiferromagnetic spintronics. J. Phys. D. 2015;48:385001. doi: 10.1088/0022-3727/48/38/385001. DOI
Thompson DA, Romankiw LT, Mayadas AF. Thin film magnetoresistors in memory, storage, and related applications. IEEE Trans. Magn. 1975;11:1039–1050. doi: 10.1109/TMAG.1975.1058786. DOI
Seemann KM, et al. Origin of the planar Hall effect in nanocrystalline Co60Fe20B20. Phys. Rev. Lett. 2011;107:086603. doi: 10.1103/PhysRevLett.107.086603. PubMed DOI
Železný J, et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets. Phys. Rev. B. 2017;95:014403. doi: 10.1103/PhysRevB.95.014403. DOI
Roy PE, Otxoa RM, Wunderlich J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B. 2016;94:014439. doi: 10.1103/PhysRevB.94.014439. DOI
Šmejkal L, Železný J, Sinova J, Jungwirth T. Electric control of dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI
De Ranieri E, et al. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New. J. Phys. 2008;10:065003. doi: 10.1088/1367-2630/10/6/065003. DOI
Turek I, Kudrnovsky J, Drchal V. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Phys. Rev. B. 2012;86:014405. doi: 10.1103/PhysRevB.86.014405. DOI
Turek I, Kudrnovsky J, Drchal V. Fermi sea term in the relativistic linear muffn-tin-orbital transport theory for random alloys. Phys. Rev. B. 2014;89:064405. doi: 10.1103/PhysRevB.89.064405. DOI
Turek I, Kudrnovsky J, Drchal V, Szunyogh L, Weinberger P. Interatomic electron transport by semiempirical and ab initio tight-binding approaches. Phys. Rev. B. 2002;65:125101. doi: 10.1103/PhysRevB.65.125101. DOI
Carva K, Turek I, Kudrnovský J, Bengone O. Disordered magnetic multilayers: Electron transport within the coherent potential approximation. Phys. Rev. B. 2006;73:144421. doi: 10.1103/PhysRevB.73.144421. DOI
FLEUR: The Jülich FLAPW code family. Available at: www.flapw.de (2017).
Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B. 2010;81:212409. doi: 10.1103/PhysRevB.81.212409. DOI
Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Khmelevskyi S, Mohn P. Layered antiferromagnetism with high Neel temperature in the intermetallic compound Mn2Au. Appl. Phys. Lett. 2008;93:162503. doi: 10.1063/1.3003878. DOI
Anisotropic magnetoresistance: materials, models and applications
Ultrashort spin-orbit torque generated by femtosecond laser pulses
Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Terahertz electrical writing speed in an antiferromagnetic memory