Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37980752
PubMed Central
PMC10684392
DOI
10.1016/j.psj.2023.103217
PII: S0032-5791(23)00736-8
Knihovny.cz E-zdroje
- Klíčová slova
- cecum, chicken, competitive exclusion, metabolome, microbiota,
- MeSH
- cékum mikrobiologie MeSH
- kur domácí * mikrobiologie MeSH
- kyselina glutamová MeSH
- nemoci drůbeže * mikrobiologie MeSH
- nukleotidy MeSH
- vitamin K MeSH
- vitaminy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina glutamová MeSH
- nukleotidy MeSH
- vitamin K MeSH
- vitaminy MeSH
The concept of competitive exclusion is well established in poultry and different products are used to suppress the multiplication of enteric pathogens in the chicken intestinal tract. While the effect has been repeatedly confirmed, the specific principles of competitive exclusion are less clear. The aim of the study was to compare metabolites in the cecal digesta of differently colonized chickens. Metabolites in the cecal contents of chickens treated with a commercial competitive exclusion product or with an experimental product consisting of 23 gut anaerobes or in control untreated chickens were determined by mass spectrometry. Extensive differences in metabolite composition among the digesta of all 3 groups of chickens were recorded. Out of 1,706 detected compounds, 495 and 279 were differently abundant in the chicks treated with a commercial or experimental competitive exclusion product in comparison to the control group, respectively. Soyasaponins, betaine, carnitine, glutamate, tyramine, phenylacetaldehyde, or 3-methyladenine were more abundant in the digesta of control chicks while 4-oxododecanedioic acid, nucleotides, dipeptides, amino acids (except for glutamate), and vitamins were enriched in the digesta of chickens colonized by competitive exclusion products. Metabolites enriched in the digesta of control chicks can be classified as of plant feed origin released in the digesta by degradative activities of the chicken. Some of these molecules disappeared from the digesta of chicks colonized by complex microbiota due to them being metabolized. Instead, nucleotides, amino acids, and vitamins increased in the digesta of colonized chicks as a consequence of the additional digestive potential brought to the cecum by microbiota from competitive exclusion products. It is therefore possible to affect metabolite profiles in the chicken cecum by its colonization with selected bacterial species.
Zobrazit více v PubMed
Azzam M.M., Jiang S.Q., Chen J.L., Lin X.J., Gou Z.Y., Fan Q.L., Wang Y.B., Li L., Jiang Z.Y. Effect of soybean isoflavones on growth performance, immune function, and viral protein 5 mRNA expression in broiler chickens challenged with infectious bursal disease virus. Animals (Basel) 2019;9:247. PubMed PMC
Balli D., Bellumori M., Paoli P., Pieraccini G., Di Paola M., De Filippo C., Di Gioia D., Mulinacci N., Innocenti M. Study on a fermented whole wheat: phenolic content, activity on PTP1B enzyme and in vitro prebiotic properties. Molecules. 2019;24:1120. PubMed PMC
Batallas R.E., Evenden M.L. Fermented or floral? Developing a generalized food bait lure to monitor cutworm and armyworm moths (Lepidoptera: Noctuidae) in field crops. Insects. 2023;14:106. PubMed PMC
Beal R.K., Wigley P., Powers C., Hulme S.D., Barrow P.A., Smith A.L. Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Vet. Immunol. Immunopathol. 2004;100:151–164. PubMed
Bhatti S.A., Khan M.Z., Hassan Z.U., Saleemi M.K., Khatoon A., Abidin Z.U., Hameed M.R. Dietary L-carnitine and vitamin-E; a strategy to combat ochratoxin-A induced immunosuppression. Toxicon. 2018;153:62–71. PubMed
Cesbron N., Sydor A., Penot M., Prevost S., Bizec B.Le, Dervilly-Pinel G. Analytical strategies to detect enobosarm administration in bovines. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017;34:632–640. PubMed
Chen Y., Wang J., Yu L., Xu T., Zhu N. Microbiota and metabolome responses in the cecum and serum of broiler chickens fed with plant essential oils or virginiamycin. Sci. Rep. 2020;10:5382. PubMed PMC
Cheng K., Brunius C., Fristedt R., Landberg R. An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics. 2020;16:46. PubMed PMC
Cheng J., Kolba N., Sisser P., Turjeman S., Even C., Koren O., Tako E. Intraamniotic administration (Gallus gallus) of genistein alters mineral transport, intestinal morphology, and gut microbiota. Nutrients. 2022;14:3473. PubMed PMC
Crhanova M., Hradecka H., Faldynova M., Matulova M., Havlickova H., Sisak F., Rychlik I. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infect. Immun. 2011;79:2755–2763. PubMed PMC
Deda O., Chatziioannou A.C., Fasoula S., Palachanis D., Raikos N., Theodoridis G.A., Gika H.G. Sample preparation optimization in fecal metabolic profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017;1047:115–123. PubMed
Filipcev B., Kojic J., Krulj J., Bodroza-Solarov M., Ilic N. Betaine in cereal grains and grain-based products. Foods. 2018;7:49. PubMed PMC
Fronza G., Gold B. The biological effects of N3-methyladenine. J. Cell. Biochem. 2004;91:250–257. PubMed
Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J.C., Van Immerseel F. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 2006;72:946–949. PubMed PMC
Gao P., Ma C., Sun Z., Wang L., Huang S., Su X., Xu J., Zhang H. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5:91. PubMed PMC
Hou Y., He W., Hu S., Wu G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids. 2019;51:1153–1165. PubMed
Jahanian R., Ashnagar M. Effects of dietary supplementation of choline and carnitine on growth performance, meat oxidative stability and carcass composition of broiler chickens fed diets with different metabolisable energy levels. Br. Poult. Sci. 2018;59:470–476. PubMed
Juricova H., Matiasovicova J., Faldynova M., Sebkova A., Kubasova T., Prikrylova H., Karasova D., Crhanova M., Havlickova H., Rychlik I. Probiotic Lactobacilli do not protect chickens against Salmonella Enteritidis infection by competitive exclusion in the intestinal tract but in feed, outside the chicken host. Microorganisms. 2022;10:219. PubMed PMC
Killiny N., Nehela Y. Citrus polyamines: Structure, biosynthesis, and physiological functions. Plants (Basel) 2020;9:426. PubMed PMC
Kubasova T., Faldynova M., Crhanova M., Karasova D., Zeman M., Babak V., Rychlik I. Succession, replacement, and modification of chicken litter microbiota. Appl. Environ. Microbiol. 2022;88 PubMed PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Pokorna A., Cizek A., Rychlik I. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One. 2019;14 PubMed PMC
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., Pokorna A., Cizek A., Rychlik I. Gut anaerobes capable of chicken caecum colonisation. Microorganisms. 2019;7:597. PubMed PMC
Li N., Yi B.J., Saleem M.A.U., Li X.N., Li J.L. Autophagy protects against Cd-induced cell damage in primary chicken hepatocytes via mitigation of oxidative stress and endoplasmic reticulum stress. Ecotoxicol. Environ. Saf. 2023;259 PubMed
Likes R., Madl R.L., Zeisel S.H., Craig S.A. The betaine and choline content of a whole wheat flour compared to other mill streams. J. Cereal Sci. 2007;46:93–95. PubMed PMC
Matysik E., Wozniak A., Paduch R., Rejdak R., Polak B., Donica H. The new TLC method for separation and determination of multicomponent mixtures of plant extracts. J. Anal. Methods Chem. 2016;2016 PubMed PMC
Mebrahtu T., Mohamed A., Wang C.Y., Andebrhan T. Analysis of isoflavone contents in vegetable soybeans. Plant Foods Hum. Nutr. 2004;59:55–61. PubMed
Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genom. 2018;19:561. PubMed PMC
Methner U., Barrow P.A., Martin G., Meyer H. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. Int. J. Food Microbiol. 1997;35:223–230. PubMed
Mortezaei S.S., Zendehdel M., Babapour V., Hasani K. The role of glutamatergic and GABAergic systems on serotonin-induced feeding behavior in chicken. Vet. Res. Commun. 2013;37:303–310. PubMed
Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.E., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. PubMed PMC
Papouskova A., Rychlik I., Harustiakova D., Cizek A. Research note: A mixture of Bacteroides spp. and other probiotic intestinal anaerobes reduces colonization by pathogenic E. coli strain O78:H4-ST117 in newly hatched chickens. Poult. Sci. 2023;102 PubMed PMC
Park I., Zimmerman N.P., Smith A.H., Rehberger T.G., Lillehoj E.P., Lillehoj H.S. Dietary supplementation with Bacillus subtilis direct-fed microbials alters chicken intestinal metabolite levels. Front. Vet. Sci. 2020;7:123. PubMed PMC
Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 2015;82:1569–1576. PubMed PMC
Ponpium P., Ratanakhanokchai K., Kyu K.L. Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb. Technol. 2000;26:459–465. PubMed
Rantala M., Nurmi E. Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens. Br. Poult. Sci. 1973;14:627–630. PubMed
Rivero J., Lidoy J., Llopis-Gimenez A., Herrero S., Flors V., Pozo M.J. Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. J. Exp. Bot. 2021;72:5038–5050. PubMed PMC
Rouhanipour H., Sharifi S.D., Irajian G.H., Jalal M.P. The effect of adding L-carnitine to omega-3 fatty acid diets on productive performance, oxidative stability, cholesterol content, and yolk fatty acid profiles in laying hens. Poult. Sci. 2022;101 PubMed PMC
Stanley D., Geier M.S., Denman S.E., Haring V.R., Crowley T.M., Hughes R.J., Moore R.J. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet. Microbiol. 2013;164:85–92. PubMed
Stanley D., Geier M.S., Hughes R.J., Denman S.E., Moore R.J. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:e84290. PubMed PMC
Varmuzova K., Kubasova T., Davidova-Gerzova L., Sisak F., Havlickova H., Sebkova A., Faldynova M., Rychlik I. Composition of gut microbiota influences resistance of newly hatched chickens to Salmonella Enteritidis infection. Front. Microbiol. 2016;7:957. PubMed PMC
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9 PubMed PMC
Volf J., Polansky O., Varmuzova K., Gerzova L., Sekelova Z., Faldynova M., Babak V., Medvecky M., Smith A.L., Kaspers B., Velge P., Rychlik I. Transient and prolonged response of chicken cecum mucosa to colonization with different gut microbiota. PLoS One. 2016;11 PubMed PMC
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., Porto C., Bouslimani A., Melnik A.V., Meehan M.J., Liu W.T., Crusemann M., Boudreau P.D., Esquenazi E., Sandoval-Calderon M., Kersten R.D., Pace L.A., Quinn R.A., Duncan K.R., Hsu C.C., Floros D.J., Gavilan R.G., Kleigrewe K., Northen T., Dutton R.J., Parrot D., Carlson E.E., Aigle B., Michelsen C.F., Jelsbak L., Sohlenkamp C., Pevzner P., Edlund A., McLean J., Piel J., Murphy B.T., Gerwick L., Liaw C.C., Yang Y.L., Humpf H.U., Maansson M., Keyzers R.A., Sims A.C., Johnson A.R., Sidebottom A.M., Sedio B.E., Klitgaard A., Larson C.B., Torres-Mendoza C.A.B.P.D., Gonzalez D.J., Silva D.B., Marques L.M., Demarque D.P., Pociute E., O'Neill E.C., Briand E., Helfrich E.J.N., Granatosky E.A., Glukhov E., Ryffel F., Houson H., Mohimani H., Kharbush J.J., Zeng Y., Vorholt J.A., Kurita K.L., Charusanti P., McPhail K.L., Nielsen K.F., Vuong L., Elfeki M., Traxler M.F., Engene N., Koyama N., Vining O.B., Baric R., Silva R.R., Mascuch S.J., Tomasi S., Jenkins S., Macherla V., Hoffman T., Agarwal V., Williams P.G., Dai J., Neupane R., Gurr J., Rodriguez A.M.C., Lamsa A., Zhang C., Dorrestein K., Duggan B.M., Almaliti J., Allard P.M., Phapale P., Nothias L.F., Alexandrov T., Litaudon M., Wolfender J.L., Kyle J.E., Metz T.O., Peryea T., Nguyen D.T., VanLeer D., Shinn P., Jadhav A., Muller R., Waters K.M., Shi W., Liu X., Zhang L., Knight R., Jensen P.R., Palsson B.O., Pogliano K., Linington R.G., Gutierrez M., Lopes N.P., Gerwick W.H., Moore B.S., Dorrestein P.C., Bandeira N. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016;34:828–837. PubMed PMC
Wang Y., Wang Y., Xu H., Mei X., Gong L., Wang B., Li W., Jiang S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow-feathered broilers. Poult. Sci. 2018;97:3540–3549. PubMed
Wang Y., Xu Y., Cao G., Zhou X., Wang Q., Fu A., Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front. Microbiol. 2023;14 PubMed PMC
Wickramasuriya S.S., Park I., Lee K., Lee Y., Kim W.H., Nam H., Lillehoj H.S. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines (Basel) 2022;10:172. PubMed PMC
Wu Y., Lei Z., Wang Y., Yin D., Aggrey S.E., Guo Y., Yuan J. Metabolome and microbiota analysis reveals the conducive effect of Pediococcus acidilactici BCC-1 and xylan oligosaccharides on broiler chickens. Front. Microbiol. 2021;12 PubMed PMC
Xi Y., Shuling N., Kunyuan T., Qiuyang Z., Hewen D., ChenCheng G., Tianhe Y., Liancheng L., Xin F. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog. 2019;132:325–334. PubMed
Yousefi J., Taherpour K., Ghasemi H.A., Akbari Gharaei M., Mohammadi Y., Rostami F. Effects of emulsifier, betaine, and L-carnitine on growth performance, immune response, gut morphology, and nutrient digestibility in broiler chickens exposed to cyclic heat stress. Br. Poult. Sci. 2023;64:384–397. PubMed
Zhang L., Ben Said L., Herve N., Zirah S., Diarra M.S., Fliss I. Effects of drinking water supplementation with Lactobacillus reuteri, and a mixture of reuterin and microcin J25 on the growth performance, caecal microbiota and selected metabolites of broiler chickens. J. Anim. Sci. Biotechnol. 2022;13:34. PubMed PMC
Zhang T., Ding H., Chen L., Lin Y., Gong Y., Pan Z., Zhang G., Xie K., Dai G., Wang J. Antibiotic-induced dysbiosis of microbiota promotes chicken lipogenesis by altering metabolomics in the cecum. Metabolites. 2021;11:487. PubMed PMC
Zivkovic A., Godevac D., Cigic B., Polak T., Pozrl T. Identification and quantification of selected benzoxazinoids and phenolics in germinated spelt (Triticum spelta) Foods. 2023;12:1769. PubMed PMC