Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota

. 2016 ; 11 (9) : e0163932. [epub] 20160929

Status Publisher Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27685470

In this study we determined protein and gene expression in the caeca of newly hatched chickens inoculated with cecal contents sourced from hens of different ages. Over 250 proteins exhibited modified expression levels in response to microbiota inoculation. The most significant inductions were observed for ISG12-2, OASL, ES1, LYG2, DMBT1-L, CDD, ANGPTL6, B2M, CUZD1, IgM and Ig lambda chain. Of these, ISG12-2, ES1 and both immunoglobulins were expressed at lower levels in germ-free chickens compared to conventional chickens. In contrast, CELA2A, BRT-2, ALDH1A1, ADH1C, AKR1B1L, HEXB, ALDH2, ALDOB, CALB1 and TTR were expressed at lower levels following inoculation of microbiota. When chicks were given microbiota preparations from different age donors, the recipients mounted differential responses to the inoculation which also differed from the response profile in naturally colonised birds. For example, B2M, CUZD1 and CELA2A responded differently to the inoculation with microbiota of 4- or 40-week-old hens. The increased or decreased gene expression could be recorded 6 weeks after the inoculation of newly hatched chickens. To characterise the proteins that may directly interact with the microbiota we characterised chicken proteins that co-purified with the microbiota and identified a range of host proteins including CDD, ANGPTL6, DMBT1-L, MEP1A and Ig lambda. We propose that induction of ISG12-2 results in reduced apoptosis of host cells exposed to the colonizing commensal microbiota and that CDD, ANGPTL6, DMBT1-L, MEP1A and Ig lambda reduce contact of luminal microbiota with the gut epithelium thereby reducing the inflammatory response.

Zobrazit více v PubMed

Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PloS One 2014;9:e115142 10.1371/journal.pone.0115142 PubMed DOI PMC

Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009;9:123 10.1186/1471-2180-9-123 PubMed DOI PMC

O’Toole PW, Claesson MJ. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int Dairy J 2010;20:281–291.

Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999;69:1046S–1051S. PubMed

Honjo K, Hagiwara T, Itoh K, Takahashi E, Hirota Y. Immunohistochemical analysis of tissue distribution of B and T cells in germfree and conventional chickens. J Vet Med Sci Jpn Soc Vet Sci 1993;55:1031–1034. 10.1292/jvms.55.1031 PubMed DOI

Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, et al. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect Immun 2011;79:2755–2763. 10.1128/IAI.01375-10 PubMed DOI PMC

Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4659–4665. 10.1073/pnas.1006451107 PubMed DOI PMC

Methner U, Barrow PA, Martin G, Meyer H. Comparative study of the protective effect against Salmonella colonisation in newly hatched SPF chickens using live, attenuated Salmonella vaccine strains, wild-type Salmonella strains or a competitive exclusion product. Int J Food Microbiol 1997;35:223–230. 10.1016/s0168-1605(96)01236-6 PubMed DOI

Schellenberg Maillard. Techniques d’élevage de volailles axéniques; in: Journées Rech Avicoles Cunicoles INRAITAVI- WPSA. Paris, ITAVI, 1973, pp 283–285.

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol 2015;82:1569–76. 10.1128/AEM.03473-15 PubMed DOI PMC

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–336. 10.1038/nmeth.f.303 PubMed DOI PMC

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 2011;21:494–504. 10.1101/gr.112730.110 PubMed DOI PMC

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009;6:359–362. 10.1038/nmeth.1322 PubMed DOI

Li J, Leghari IH, He B, Zeng W, Mi Y, Zhang C. Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-α. Theriogenology 2014;82:517–524. 10.1016/j.theriogenology.2014.05.003 PubMed DOI

Rosenstiel P, Sina C, End C, Renner M, Lyer S, Till A, et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol 2007;178:8203–8211. 10.4049/jimmunol.178.12.8203 PubMed DOI

Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, Stejskal K, et al. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res 2013;44:37 10.1186/1297-9716-44-37 PubMed DOI PMC

Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980;21:793–798. 10.1136/gut.21.9.793 PubMed DOI PMC

Fitch MD, Fleming SE. Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. Am J Physiol 1999;277:G31–40. PubMed

Clausen MR, Mortensen PB. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 1995;37:684–689. 10.1136/gut.37.5.684 PubMed DOI PMC

Richardson SJ. Evolutionary changes to transthyretin: evolution of transthyretin biosynthesis. FEBS J 2009;276:5342–5356. 10.1111/j.1742-4658.2009.07244.x PubMed DOI

Yamauchi K, Ishihara A. Evolutionary changes to transthyretin: developmentally regulated and tissue-specific gene expression. FEBS J 2009;276:5357–5366. 10.1111/j.1742-4658.2009.07245.x PubMed DOI

Rychlik I, Elsheimer-Matulova M, Kyrova K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet Res 2014;45:119 10.1186/s13567-014-0119-2 PubMed DOI PMC

Barber MRW, Aldridge JR, Fleming-Canepa X, Wang Y-D, Webster RG, Magor KE. Identification of avian RIG-I responsive genes during influenza infection. Mol Immunol 2013;54:89–97. 10.1016/j.molimm.2012.10.038 PubMed DOI PMC

Liaskos C, Rigopoulou EI, Orfanidou T, Bogdanos DP, Papandreou CN. CUZD1 and anti-CUZD1 antibodies as markers of cancer and inflammatory bowel diseases. Clin Dev Immunol 2013:968041 10.1155/2013/968041 PubMed DOI PMC

Cheriyath V, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, et al. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene 2012;31:2222–2236. 10.1038/onc.2011.393 PubMed DOI

Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6–16 and ISG12/IFI27) in innate immunity and cancer. J Interferon Cytokine Res 2011;31:173–181. 10.1089/jir.2010.0105 PubMed DOI PMC

Cheriyath V, Glaser KB, Waring JF, Baz R, Hussein MA, Borden EC. G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells. J Clin Invest 2007;117:3107–3117. 10.1172/JCI31122 PubMed DOI PMC

Gassler N, Roth W, Funke B, Schneider A, Herzog F, Tischendorf JJW, et al. Regulation of enterocyte apoptosis by acyl-CoA synthetase 5 splicing. Gastroenterology 2007;133:587–598. 10.1053/j.gastro.2007.06.005 PubMed DOI

Bikker FJ, Ligtenberg AJM, Nazmi K, Veerman ECI, van’t Hof W, Bolscher JGM, et al. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J Biol Chem 2002;277:32109–32115. 10.1074/jbc.M203788200 PubMed DOI

Prakobphol A, Xu F, Hoang VM, Larsson T, Bergstrom J, Johansson I, et al. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J Biol Chem 2000;275:39860–39866. 10.1074/jbc.M006928200 PubMed DOI

Madsen J, Tornøe I, Nielsen O, Lausen M, Krebs I, Mollenhauer J, et al. CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D. Eur J Immunol 2003;33:2327–2336. 10.1002/eji.200323972 PubMed DOI

Wu C, Söderhäll K, Söderhäll I. Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 2011;11:2249–2264. 10.1002/pmic.201000728 PubMed DOI

Doolittle RF, McNamara K, Lin K. Correlating structure and function during the evolution of fibrinogen-related domains. Protein Sci 2012;21:1808–1823. 10.1002/pro.2177 PubMed DOI PMC

Hanington PC, Zhang S-M. The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 2011;3:17–27. 10.1159/000321882 PubMed DOI PMC

Vazeille E, Bringer M-A, Gardarin A, Chambon C, Becker-Pauly C, Pender SLF, et al. Role of meprins to protect ileal mucosa of Crohn’s disease patients from colonization by adherent-invasive E. coli. PloS One 2011;6:e21199 10.1371/journal.pone.0021199 PubMed DOI PMC

Boackle RJ, Connor MH, Vesely J. High molecular weight non-immunoglobulin salivary agglutinins (NIA) bind C1Q globular heads and have the potential to activate the first complement component. Mol Immunol 1993;30:309–319. 10.1016/0161-5890(93)90059-k PubMed DOI

Ligtenberg AJM, Bikker FJ, De Blieck-Hogervorst JMA, Veerman ECI, Nieuw Amerongen AV. Binding of salivary agglutinin to IgA. Biochem J 2004;383:159–164. 10.1042/BJ20040265 PubMed DOI PMC

Ligtenberg AJM, Karlsson NG, Veerman ECI. Deleted in Malignant Brain Tumors-1 Protein (DMBT1): A Pattern Recognition Receptor with Multiple Binding Sites. Int J Mol Sci 2010;11:5212–5233. 10.3390/ijms1112521 PubMed DOI PMC

Tino MJ, Wright JR. Glycoprotein-340 binds surfactant protein-A (SP-A) and stimulates alveolar macrophage migration in an SP-A-independent manner. Am J Respir Cell Mol Biol 1999;20:759–768. 10.1165/ajrcmb.20.4.3439 PubMed DOI

Oho T, Bikker FJ, Nieuw Amerongen AV, Groenink J. A peptide domain of bovine milk lactoferrin inhibits the interaction between streptococcal surface protein antigen and a salivary agglutinin peptide domain. Infect Immun 2004;72:6181–6184. 10.1128/IAI.72.10.6181-6184.2004 PubMed DOI PMC

Thornton DJ, Davies JR, Kirkham S, Gautrey A, Khan N, Richardson PS, et al. Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: evidence for an association involving the MUC5B mucin. Glycobiology 2001;11:969–977. 10.1093/glycob/11.11.969 PubMed DOI

Kojouharova MS, Tsacheva IG, Tchorbadjieva MI, Reid KBM, Kishore U. Localization of ligand-binding sites on human C1q globular head region using recombinant globular head fragments and single-chain antibodies. Biochim Biophys Acta 2003;1652:64–74. 10.1016/j.bbapap.2003.08.003 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Immunoglobulin secretion influences the composition of chicken caecal microbiota

. 2024 Oct 25 ; 14 (1) : 25410. [epub] 20241025

Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta

. 2024 Jan ; 103 (1) : 103217. [epub] 20231019

Host Species Adaptation of Obligate Gut Anaerobes Is Dependent on Their Environmental Survival

. 2022 May 25 ; 10 (6) : . [epub] 20220525

Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken

. 2021 Nov 04 ; 11 (11) : . [epub] 20211104

Composition and Function of Chicken Gut Microbiota

. 2020 Jan 08 ; 10 (1) : . [epub] 20200108

Systematic Culturomics Shows that Half of Chicken Caecal Microbiota Members can be Grown in Vitro Except for Two Lineages of Clostridiales and a Single Lineage of Bacteroidetes

. 2019 Oct 28 ; 7 (11) : . [epub] 20191028

Contact with adult hen affects development of caecal microbiota in newly hatched chicks

. 2019 ; 14 (3) : e0212446. [epub] 20190306

Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures

. 2018 Jul 31 ; 19 (1) : 561. [epub] 20180731

Gene expression in the chicken caecum is dependent on microbiota composition

. 2017 Dec 04 ; 48 (1) : 85. [epub] 20171204

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...