Gene expression in the chicken caecum is dependent on microbiota composition

. 2017 Dec 04 ; 48 (1) : 85. [epub] 20171204

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29202873
Odkazy

PubMed 29202873
PubMed Central PMC5716255
DOI 10.1186/s13567-017-0493-7
PII: 10.1186/s13567-017-0493-7
Knihovny.cz E-zdroje

Gut microbiota is of considerable importance for each host. Despite this, germ-free animals can be obtained and raised to sexual maturity and consequences of the presence or absence of gut microbiota on gene expression of the host remain uncharacterised. In this study, we performed an unbiased study of protein expression in the caecum of germ-free and colonised chickens. The major difference between these two groups was in the expression of immunoglobulins which were essentially absent in the germ-free chickens. Microbiota also caused a minor decrease in the expression of focal adhesion and extracellular matrix proteins and an increase in the expression of argininosuccinate synthase ASS1, redox potential sensing, fermentative metabolic processes and detoxification systems represented by sulfotransferases SULT1C3 or SULT1E1. Since we also analysed expression in the caecum of E. coli Nissle and E. faecium DSM7134 mono-associated chickens, we concluded that at least immunoglobulin expression and expression of cystathionine synthase (CBS) was dependent on microbiota composition with E. coli Nissle stimulating more immunoglobulin and PIGR expression and E. faecium DSM7134 stimulating more CBS expression. Gut microbiota and its composition therefore affected protein expression in the chicken caecum though except for immunoglobulin production, the remaining differences were unexpectedly low.

Zobrazit více v PubMed

Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816. PubMed DOI

Boyen F, Haesebrouck F, Vanparys A, Volf J, Mahu M, Van Immerseel F, Rychlik I, Dewulf J, Ducatelle R, Pasmans F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet Microbiol. 2008;132:319–327. doi: 10.1016/j.vetmic.2008.05.008. PubMed DOI

Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–16055. doi: 10.1073/pnas.1102999108. PubMed DOI PMC

Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, Rudi K. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26:1155–1162. doi: 10.1111/nmo.12378. PubMed DOI

Furuse M, Okumura J. Nutritional and physiological characteristics in germ-free chickens. Comp Biochem Physiol A Physiol. 1994;109:547–556. doi: 10.1016/0300-9629(94)90193-7. PubMed DOI

Wostmann B, Bruckner-Kardoss E. Development of cecal distention in germ-free baby rats. Am J Physiol. 1959;197:1345–1346. PubMed

Suzuki R. Influence of intestinal microorganisms on the metabolism of bile acids in mice. Keio J Med. 1970;19:73–86. doi: 10.2302/kjm.19.73. PubMed DOI

Madsen D, Beaver M, Chang L, Bruckner-Kardoss E, Wostmann B. Analysis of bile acids in conventional and germfree rats. J Lipid Res. 1976;17:107–111. PubMed

Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, Rychlik I. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect Immun. 2011;79:2755–2763. doi: 10.1128/IAI.01375-10. PubMed DOI PMC

Honjo K, Hagiwara T, Itoh K, Takahashi E, Hirota Y. Immunohistochemical analysis of tissue distribution of B and T cells in germfree and conventional chickens. J Vet Med Sci. 1993;55:1031–1034. doi: 10.1292/jvms.55.1031. PubMed DOI

Van Immerseel F, De Buck J, De Smet I, Mast J, Haesebrouck F, Ducatelle R. Dynamics of immune cell infiltration in the caecal lamina propria of chickens after neonatal infection with a Salmonella enteritidis strain. Dev Comp Immunol. 2002;26:355–364. doi: 10.1016/S0145-305X(01)00084-2. PubMed DOI

Volf J, Polansky O, Varmuzova K, Gerzova L, Sekelova Z, Faldynova M, Babak V, Medvecky M, Smith AL, Kaspers B, Velge P, Rychlik I. Transient and prolonged response of chicken cecum mucosa to colonization with different gut microbiota. PLoS One. 2016;11:e0163932. doi: 10.1371/journal.pone.0163932. PubMed DOI PMC

Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, Salzman N. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76:907–915. doi: 10.1128/IAI.01432-07. PubMed DOI PMC

Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C. STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–D416. doi: 10.1093/nar/gkn760. PubMed DOI PMC

Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun. 1995;63:3904–3913. PubMed PMC

Han Z, Willer T, Li L, Pielsticker C, Rychlik I, Velge P, Kaspers B, Rautenschlein S. The influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect Immun. 2017;85:e00380. doi: 10.1128/IAI.00380-17. PubMed DOI PMC

Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, Stejskal K, Zdrahal Z, Rychlik I. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res. 2013;44:37. doi: 10.1186/1297-9716-44-37. PubMed DOI PMC

Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC

Pollard M, Sharon N. Responses of the Peyer’s patches in germ-free mice to antigenic stimulation. Infect Immun. 1970;2:96–100. PubMed PMC

Schreiber F, Arasteh JM, Lawley TD. Pathogen resistance mediated by IL-22 signaling at the epithelial-microbiota interface. J Mol Biol. 2015;427:3676–3682. doi: 10.1016/j.jmb.2015.10.013. PubMed DOI

Tobisawa Y, Imai Y, Fukuda M, Kawashima H. Sulfation of colonic mucins by N-acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice. J Biol Chem. 2010;285:6750–6760. doi: 10.1074/jbc.M109.067082. PubMed DOI PMC

O’Reilly EL, Burchmore RJ, Sparks NH, Eckersall PD. The effect of microbial challenge on the intestinal proteome of broiler chickens. Proteome Sci. 2016;15:10. doi: 10.1186/s12953-017-0118-0. PubMed DOI PMC

Groulx JF, Gagne D, Benoit YD, Martel D, Basora N, Beaulieu JF. Collagen VI is a basement membrane component that regulates epithelial cell–fibronectin interactions. Matrix Biol. 2011;30:195–206. doi: 10.1016/j.matbio.2011.03.002. PubMed DOI

Ponnalagu D, Gururaja Rao S, Farber J, Xin W, Hussain AT, Shah K, Tanda S, Berryman M, Edwards JC, Singh H. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins. Mitochondrion. 2016;27:6–14. doi: 10.1016/j.mito.2016.01.001. PubMed DOI

Most P, Papenbrock J. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Molecules. 2015;20:1410–1423. doi: 10.3390/molecules20011410. PubMed DOI PMC

Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, Bicknell R. EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem. 2003;278:47079–47088. doi: 10.1074/jbc.M308124200. PubMed DOI

Camargo Lde L, Babelova A, Mieth A, Weigert A, Mooz J, Rajalingam K, Heide H, Wittig I, Lopes LR, Brandes RP. Endo-PDI is required for TNFalpha-induced angiogenesis. Free Radic Biol Med. 2013;65:1398–1407. doi: 10.1016/j.freeradbiomed.2013.09.028. PubMed DOI

Groneberg D, Voussen B, Friebe A. Integrative control of gastrointestinal motility by nitric oxide. Curr Med Chem. 2016;23:2715–2735. doi: 10.2174/0929867323666160812150907. PubMed DOI

Kellogg TF, Knight PL, Wostmann BS. Effect of bile acid deconjugation on the fecal excretion of steroids. J Lipid Res. 1970;11:362–366. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...