Plant Nitrilase Homologues in Fungi: Phylogenetic and Functional Analysis with Focus on Nitrilases in Trametes versicolor and Agaricus bisporus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00184S
Grantová Agentura České Republiky
CZ.1.05/1.1.00/02.0109 and LM2015043
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32854275
PubMed Central
PMC7503981
DOI
10.3390/molecules25173861
PII: molecules25173861
Knihovny.cz E-zdroje
- Klíčová slova
- Agaricus bisporus, Trametes versicolor, arylaliphatic nitriles, fumaronitrile, fungi, homology modeling, plant nitrilase homologues, plant-fungus interactions, substrate specificity, β-cyano-L-alanine,
- MeSH
- Agaricus * enzymologie genetika MeSH
- aminohydrolasy * genetika metabolismus MeSH
- asparagin genetika metabolismus MeSH
- fungální proteiny * genetika metabolismus MeSH
- fylogeneze * MeSH
- kyselina asparagová genetika metabolismus MeSH
- Polyporaceae enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminohydrolasy * MeSH
- asparagin MeSH
- fungální proteiny * MeSH
- kyselina asparagová MeSH
- nitrilase MeSH Prohlížeč
Fungi contain many plant-nitrilase (NLase) homologues according to database searches. In this study, enzymes NitTv1 from Trametes versicolor and NitAb from Agaricus bisporus were purified and characterized as the representatives of this type of fungal NLase. Both enzymes were slightly more similar to NIT4 type than to NIT1/NIT2/NIT3 type of plant NLases in terms of their amino acid sequences. Expression of the synthetic genes in Escherichia coli Origami B (DE3) was induced with 0.02 mM isopropyl β-D-1-thiogalactopyranoside at 20 °C. Purification of NitTv1 and NitAb by cobalt affinity chromatography gave ca. 6.6 mg and 9.6 mg of protein per 100 mL of culture medium, respectively. Their activities were determined with 25 mM of nitriles in 50 mM Tris/HCl buffer, pH 8.0, at 30 °C. NitTv1 and NitAb transformed β-cyano-L-alanine (β-CA) with the highest specific activities (ca. 132 and 40 U mg-1, respectively) similar to plant NLase NIT4. β-CA was transformed into Asn and Asp as in NIT4 but at lower Asn:Asp ratios. The fungal NLases also exhibited significant activities for (aryl)aliphatic nitriles such as 3-phenylpropionitrile, cinnamonitrile and fumaronitrile (substrates of NLase NIT1). NitTv1 was more stable than NitAb (at pH 5-9 vs. pH 5-7). These NLases may participate in plant-fungus interactions by detoxifying plant nitriles and/or producing plant hormones. Their homology models elucidated the molecular interactions with various nitriles in their active sites.
Zobrazit více v PubMed
Pace H.C., Brenner C. The nitrilase superfamily: Classification, structure and function. Genome Biol. 2001;2:REVIEWS0001. doi: 10.1186/gb-2001-2-1-reviews0001. PubMed DOI PMC
Brenner C. Catalysis in the nitrilase superfamily. Curr. Opin. Struct. Biol. 2002;12:775–782. doi: 10.1016/S0959-440X(02)00387-1. PubMed DOI
Thuku R.N., Brady D., Benedik M.J., Sewell B.T. Microbial nitrilases: Versatile, spiral forming, industrial enzymes. J. Appl. Microbiol. 2009;106:703–727. doi: 10.1111/j.1365-2672.2008.03941.x. PubMed DOI
Piotrowski M., Schönfelder S., Weiler E.W. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. J. Biol. Chem. 2001;276:2616–2621. doi: 10.1074/jbc.M007890200. PubMed DOI
Martínková L., Rucká L., Nešvera J., Pátek M. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J. Microbiol. Biotechnol. 2017;33:8. doi: 10.1007/s11274-016-2173-6. PubMed DOI
Prozomix. [(accessed on 14 August 2020)]; Available online: http://www.prozomix.com/products/view?product=1831.
Codexis 3. [(accessed on 14 August 2020)]; Available online: https://www.codexis-estore.com/product-page/codex-nitrilase-nit-screening-kit.
Merck KGaA. [(accessed on 14 August 2020)]; Available online: https://www.sigmaaldrich.com/catalog/product/sigma/04529.
Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Müller A., Weiler E.W., Piotrowski M. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta. 2001;212:508–516. doi: 10.1007/s004250000420. PubMed DOI
Osswald S., Wajant H., Effenberger F. Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur. J. Biochem. 2002;269:680–687. doi: 10.1046/j.0014-2956.2001.02702.x. PubMed DOI
Piotrowski M. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry. 2008;69:2655–2667. doi: 10.1016/j.phytochem.2008.08.020. PubMed DOI
Howden A.J.M., Preston G.M. Nitrilase enzymes and their role in plant–microbe interactions. Microb. Biotechnol. 2009;2:441–451. doi: 10.1111/j.1751-7915.2009.00111.x. PubMed DOI PMC
Binder B.M. Ethylene signaling in plants. J. Biol. Chem. 2020;295:7710–7725. doi: 10.1074/jbc.REV120.010854. PubMed DOI PMC
Martínková L. Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact. Fungal Biol. Rev. 2019;33:149–157. doi: 10.1016/j.fbr.2018.11.002. DOI
Basile L.J., Willson R.C., Sewell B.T., Benedik M.J. Genome mining of cyanide degrading nitrilases from filamentous fungi. Appl. Microbiol. Biotechnol. 2008;80:427–435. doi: 10.1007/s00253-008-1559-2. PubMed DOI
Rinágelová A., Kaplan O., Veselá A.B., Chmátal M., Křenková A., Plíhal O., Pasquarelli F., Cantarella M., Martínková L. Cyanide hydratase from Aspergillus niger K10: Overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Process Biochem. 2014;49:445–450. doi: 10.1016/j.procbio.2013.12.008. DOI
Veselá A.B., Rucká L., Kaplan O., Pelantová H., Nešvera J., Pátek M., Martínková L. Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles. Appl. Microbiol. Biotechnol. 2016;100:2193–2202. doi: 10.1007/s00253-015-7023-1. PubMed DOI
Rucká L., Chmátal M., Kulik N., Petrásková L., Pelantová H., Novotný P., Příhodová R., Pátek M., Martínková L. Genetic and functional diversity of nitrilases in Agaricomycotina. Int. J. Mol. Sci. 2019;20:5990. doi: 10.3390/ijms20235990. PubMed DOI PMC
Basic Local Alignment Search Tool. [(accessed on 30 June 2020)]; Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi.
Petříčková A., Veselá A.B., Kaplan O., Kubáč D., Uhnáková B., Malandra A., Felsberg J., Rinágelová A., Weyrauch P., Křen V., et al. Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl. Microbiol. Biotechnol. 2012;93:1553–1561. Erratum in 2013, 97, 9263–9264. PubMed
Mulelu A.E., Kirykowicz A.M., Woodward J.D. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun. Biol. 2019;2:260. doi: 10.1038/s42003-019-0505-4. PubMed DOI PMC
Zhang L., Yin B., Wang C., Jiang S., Wang H., Yuan Y.A., Wei D. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Synechocystis sp. PCC6803. J. Struct. Biol. 2014;188:93–101. doi: 10.1016/j.jsb.2014.10.003. PubMed DOI
Cuff J.A., Clamp M.E., Siddiqui A.S., Finlay M., Barton G.J. JPred: A consensus secondary structure prediction server. Bioinformatics. 1998;14:892–893. doi: 10.1093/bioinformatics/14.10.892. PubMed DOI
Chen Z., Jiang S., Wang H., Wang L., Wei D. Switching the regioselectivity of two nitrilases toward succinonitrile by mutating the active center pocket key residues through a semi-rational engineering. Chem. Commun. 2019;55:2948–2951. doi: 10.1039/C8CC10110H. PubMed DOI
Howden A.J., Harrison J., Preston G.M. A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J. 2009;57:243–253. doi: 10.1111/j.1365-313X.2008.03682.x. PubMed DOI
Kiziak C., Conradt D., Stolz A., Mattes R., Klein J. Nitrilase from Pseudomonas fluorescens EBC191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology. 2005;151:3639–3648. doi: 10.1099/mic.0.28246-0. PubMed DOI
Zhu D., Mukherjee C., Yang Y., Rios B.E., Gallagher D.T., Smith N.N., Biehl E.R., Hua L. A new nitrilase from Bradyrhizobium japonicum USDA 110—Gene cloning, biochemical characterization and substrate specificity. J. Biotechnol. 2008;133:327–333. doi: 10.1016/j.jbiotec.2007.10.001. PubMed DOI
Fernandes B.C.M., Mateo C., Kiziak C., Chmura A., Wacker J., van Rantwijk F., Stolz A., Sheldon R.A. Nitrile hydratase activity of a recombinant nitrilase. Adv. Synth. Catal. 2006;348:2597–2603. doi: 10.1002/adsc.200600269. DOI
Sosedov O., Stolz A. Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl. Microbiol. Biotechnol. 2014;98:1595–1607. doi: 10.1007/s00253-013-4968-9. PubMed DOI
Xu C., Tang L., Liang Y., Jiao S., Yu H., Luo H. Novel chaperones RrGroEL and RrGroES for activity and stability enhancement of nitrilase in Escherichia coli and Rhodococcus ruber. Molecules. 2020;25:1002. doi: 10.3390/molecules25041002. PubMed DOI PMC
Jamwal S., Dautoo U.K., Ranote S., Dharela R., Chauhan G.S. Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int. J. Biol. Macromol. 2019;131:117–126. doi: 10.1016/j.ijbiomac.2019.03.034. PubMed DOI
Talley K., Alexov E. On the pH-optimum of activity and stability of proteins. Proteins. 2010;78:2699–2706. doi: 10.1002/prot.22786. PubMed DOI PMC
Jandhyala D., Berman M., Meyers P.R., Sewell B.T., Willson R.C., Benedik M.J. CynD, the cyanide dehydratase from Bacillus pumilus: Gene cloning and structural studies. Appl. Environ. Microbiol. 2003;69:4794–4805. doi: 10.1128/AEM.69.8.4794-4805.2003. PubMed DOI PMC
Effenberger F., Osswald S. Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asymmetry. 2001;12:279–285. doi: 10.1016/S0957-4166(01)00034-9. DOI
Constraint-Based Multiple Alignment Tool. [(accessed on 30 June 2020)]; Available online: https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi.
Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Schrödinger Release 2018–2. Schrödinger, LLC; New York, NY, USA: 2018.
Krieger E., Darden T., Nabuurs S.B., Finkelstein A., Vriend G. Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins. 2004;57:678–683. doi: 10.1002/prot.20251. PubMed DOI
Krieger E., Dunbrack R.L., Jr., Hooft R.W.W., Krieger B. Assignment of protonation states in proteins and ligands: Combining pKa prediction with hydrogen bonding network optimization. Methods Mol. Biol. 2012;819:405–421. doi: 10.1007/978-1-61779-465-0_25. PubMed DOI
Brunner S., Eppinger E., Fischer S., Gröning J., Stolz A. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. World J. Microbiol. Biotechnol. 2018;34:91. doi: 10.1007/s11274-018-2477-9. PubMed DOI
Kriechbaumer V., Park W.J., Piotrowski M., Meeley R.B., Gierl A., Glawischnig E. Maize nitrilases have a dual role in auxin homeostasis and β-cyanoalanine hydrolysis. J. Exp. Bot. 2007;58:4225–4233. doi: 10.1093/jxb/erm279. PubMed DOI
MyCurveFit. [(accessed on 7 July 2020)]; Available online: https://mycurvefit.com.
King R.D., Sternberg M.J.E. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. 1996;5:2298–2310. doi: 10.1002/pro.5560051116. PubMed DOI PMC
Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 1993;232:584–599. doi: 10.1006/jmbi.1993.1413. PubMed DOI
Guermeur Y., Geourjon C., Gallinari P., Deléage G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics. 1999;15:413–421. doi: 10.1093/bioinformatics/15.5.413. PubMed DOI
Fiser A., Sali A. ModLoop: Automated modeling of loops in protein structures. Bioinformatics. 2003;19:2500–2501. doi: 10.1093/bioinformatics/btg362. PubMed DOI
Canutescu A.A., Dunbrack R.L. Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci. 2003;12:963–972. doi: 10.1110/ps.0242703. PubMed DOI PMC
Canutescu A.A., Shelenkov A.A., Dunbrack R.L. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003;12:2001–2014. doi: 10.1110/ps.03154503. PubMed DOI PMC
Konagurthu A.S., Whisstock J.C., Stuckey P.J., Lesk A.M. MUSTANG: A multiple structural alignment algorithm. Proteins. 2006;64:559–574. doi: 10.1002/prot.20921. PubMed DOI
Willard L., Ranjan A., Zhang H.Y., Monzavi H., Boyko R.F., Sykes B.D., Wishart D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003;31:3316–3319. doi: 10.1093/nar/gkg565. PubMed DOI PMC
Wiederstein M., Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. doi: 10.1093/nar/gkm290. PubMed DOI PMC