New findings in the genetics of schizophrenia
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
24255876
PubMed Central
PMC3832862
DOI
10.5498/wjp.v3.i3.57
Knihovny.cz E-zdroje
- Klíčová slova
- Copy number variations, Endophenotypes, Genetics, Genome-wide association study, Schizophrenia,
- Publikační typ
- časopisecké články MeSH
New findings in schizophrenia genetics are based on genome-wide association studies (GWAS), research into DNA copy number variations (CNVs), and endophenotypes. More than 70 genes have recently been suspected to be involved in the genetic background of schizophrenia based on the GWAS´s results. They are typically related to neurodevelopment/neuroplasticity, immunology and neuroendocrinology. Nevertheless, for many detected genes their possible relationship to schizophrenia etiopathogenesis is still unknown. The CNVs at genome loci 1q21.1 (candidate gene e.g., PRKAB2), 2p16.3 (candidate gene e.g., NRXN1), 3q29 (candidate genes e.g., BDH1, DLG1, PAK2 or TFRC), 15q11.2 (candidate gene e.g., CYFIP1), 15q13.3 (candidate gene e.g., CHRNA7), 16p13.1 (candidate genes e.g.,NTAN1 or NDE1) and 22q11.2 (candidate genes e.g., COMT, GSTT2 or PRODH) were associated with schizophrenia most frequently. Genetic research of schizophrenia endophenotypes, usually neurophysiological, neuromotoric, neurocognitive, neuroanatomical, neurological or personality-related, will help us to discover the role of relevant genes in the pathogenesis of schizophrenia. It is also necessary to integrate knowledge from other research platforms in schizophrenia, like epigenetics, studies of gene-environment interactions, transcriptomics, proteomics, metabolomics, neuroimaging and psychopathology. A better knowledge of the genetic background of schizophrenia can lead to changes in the treatment, prevention and genetic counselling. It may also reduce stigma in this severe mental disorder.
Zobrazit více v PubMed
Girard SL, Dion PA, Rouleau GA. Schizophrenia genetics: putting all the pieces together. Curr Neurol Neurosci Rep. 2012;12:261–266. PubMed
Boshes RA, Manschreck TC, Konigsberg W. Genetics of the schizophrenias: a model accounting for their persistence and myriad phenotypes. Harv Rev Psychiatry. 2012;20:119–129. PubMed
Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull. 2011;37:456–463. PubMed PMC
Bergen SE, Petryshen TL. Genome-wide association studies of schizophrenia: does bigger lead to better results? Curr Opin Psychiatry. 2012;25:76–82. PubMed PMC
National Human Genome Research Institute. A Catalog of Published Genome-Wide Association Studies. Available from: http: //www.genome.gov/gwastudies/
Doherty JL, O’Donovan MC, Owen MJ. Recent genomic advances in schizophrenia. Clin Genet. 2012;81:103–109. PubMed
Hosák L, Silhan P, Hosáková J. Genome-wide association studies in schizophrenia, and potential etiological and functional implications of their results. Acta Medica (Hradec Kralove) 2012;55:3–11. PubMed
Duan J, Sanders AR, Gejman PV. Genome-wide approaches to schizophrenia. Brain Res Bull. 2010;83:93–102. PubMed PMC
Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV, Kelsoe J, Lehner T, Levinson DF, Moran A, Sklar P, et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry. 2009;166:540–556. PubMed PMC
Williams HJ, Owen MJ, O’Donovan MC. Schizophrenia genetics: new insights from new approaches. Br Med Bull. 2009;91:61–74. PubMed
Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–712. PubMed PMC
Wikimedia Foundation, Inc Copy-number variation. Available from: http: //en.wikipedia.org/
Bassett AS, Chow EW. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10:148–157. PubMed PMC
Hosak L, Silhan P, Hosakova J. Genomic copy number variations: A breakthrough in our knowledge on schizophrenia etiology? Neuro Endocrinol Lett. 2012;33:183–190. PubMed
Bassett AS, Scherer SW, Brzustowicz LM. Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry. 2010;167:899–914. PubMed PMC
Maiti S, Kumar KH, Castellani CA, O’Reilly R, Singh SM. Ontogenetic de novo copy number variations (CNVs) as a source of genetic individuality: studies on two families with MZD twins for schizophrenia. PLoS One. 2011;6:e17125. PubMed PMC
Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry. 2010;49:1091–1104. PubMed PMC
Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160:636–645. PubMed
Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J. Psychiatric genetics: search for phenotypes. Trends Neurosci. 1998;21:102–105. PubMed
Hosak L, Silhan P, Hosakova J. Endophenotypes in Genetic Studies of Schizophrenia. Psychiatrie. 2012;16:157–166. Available from: http://www.tigis.cz/images/stories/psychiatrie/2012/03/06_hosak_psych_3-12.pdf.
Meyer-Lindenberg A. Imaging genetics of schizophrenia. Dialogues Clin Neurosci. 2010;12:449–456. PubMed PMC
de Frias CM, Marklund P, Eriksson E, Larsson A, Oman L, Annerbrink K, Bäckman L, Nilsson LG, Nyberg L. Influence of COMT gene polymorphism on fMRI-assessed sustained and transient activity during a working memory task. J Cogn Neurosci. 2010;22:1614–1622. PubMed
Braff DL, Freedman R, Schork NJ, Gottesman II. Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull. 2007;33:21–32. PubMed PMC
Bertolino A, Blasi G. The genetics of schizophrenia. Neuroscience. 2009;164:288–299. PubMed
Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. 2013;381:1654–1662. PubMed
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet. 2013;4:76. PubMed PMC
Salokangas RK. Symptom dimensions and outcome in schizophrenia. World Psychiatry. 2003;2:172–178. PubMed PMC
Alkelai A, Lupoli S, Greenbaum L, Kohn Y, Kanyas-Sarner K, Ben-Asher E, Lancet D, Macciardi F, Lerer B. DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population. Int J Neuropsychopharmacol. 2012;15:459–469. PubMed
Corvin A. Schizophrenia at a genetics crossroads: where to now? Schizophr Bull. 2013;39:490–495. PubMed PMC
Pelayo-Terán JM, Suárez-Pinilla P, Chadi N, Crespo-Facorro B. Gene-environment interactions underlying the effect of cannabis in first episode psychosis. Curr Pharm Des. 2012;18:5024–5035. PubMed
Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry. 2005;57:1117–1127. PubMed
Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev. 2012;36:556–571. PubMed
Gene-Environment Interactions in Major Mental Disorders in the Czech Republic