Gene-Environment Interactions in Major Mental Disorders in the Czech Republic

. 2020 ; 16 () : 1147-1156. [epub] 20200506

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32440130

BACKGROUND: Mental disorders affect about one-third of the human population, are typically chronic and significantly decrease the quality of life. Presently, the treatment of mental illnesses is far from adequate with a substantial proportion of the patients being pharmacoresistant and suffering from relapses. One of the reasons for this complicated situation is that we do not precisely know about the causes of mental disorders, so their treatment cannot be causal. The etiology of a mental disorder is typically based on a combination of molecular (genetic) and environmental factors. AIM: The aim of the project is to discover the gene-environment interactions (GxE) in a wide spectrum of mental disorders. METHODS: The design of our study is innovative in the sense that we intend to study large groups of associated mental disorders as a whole instead of in isolation. This would enable us to map out the possible environmental causal factors in detail in relation to their character, magnitude and timing. The project also allows a study of genetics (including epigenetics and microbiomes) as well as the environment simultaneously. We plan on involving three study groups: the first group are patients suffering from schizophrenia or a mood disorder such as major depression, recurrent depressive disorder and bipolar affective disorder; the second group of patients have anxiety disorders; and the third group are healthy volunteers from the general population who are genetically unrelated. All of the study subjects will undergo the following assessments: a psychiatric examination, the identification of stressful life events with the aid of a questionnaire, the examination of their reaction to stress, genetic and epigenetic (microRNA) assessments and the analysis of oral and gut microbiome. CONCLUSION: We expect that some of the genetic as well as environmental factors in the studied mental disorders are shared, while some others are specific. We also expect that the GxE (gene-environment interaction) in schizophrenic and affective disorders will be different from the GxE in anxiety disorders and that the GxE in the studied mental disorders will differ generally from the GxE in healthy volunteers. Our results can help in the prevention and individualized treatment of a range of mental disorders.

Zobrazit více v PubMed

Kessler RC, Angermeyer M, Antohony JC, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry. 2007;6(3):168–176. PubMed PMC

Hosak L, Hrdlicka M, editors. Psychiatry and Pedopsychiatry. 1st ed. Prague: Karolinum Press; 2016.

Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2017. Seattle: IHME; 2018. Available from: http://www.healthdata.org/sites/default/files/files/policy_report/2019/GBD_2017_Booklet.pdf. Accessed March6, 2019.

Sadock BJ, Sadock VA, Ruiz P, Kaplan HI, editors. Kaplan & Sadock´s Comprehensive Textbook of Psychiatry. 9th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2009.

Zwicker A, Denovan-Wright EM, Uher R. Gene-environment interplay in the etiology of psychosis. Psychol Med. 2018;48(12):1925–1936. doi:10.1017/S003329171700383X PubMed DOI

Ludwig B, Dwivedi Y. Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry. 2016;21(11):1490–1498. doi:10.1038/mp.2016.123 PubMed DOI PMC

Van der Auwera S, Peyrot WJ, Milaneschi Y, et al. Genome-wide gene-environment interaction in depression: a systematic evaluation of candidate genes: the childhood trauma working-group of PGC-MDD. Am J Med Genet B Neuropsychiatr Genet. 2018;177(1):40–49. doi:10.1002/ajmg.b.32593 PubMed DOI PMC

Sharma S, Ressler KJ. Genomic updates in understanding PTSD. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:197–203. doi:10.1016/j.pnpbp.2018.11.010 PubMed DOI PMC

Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018;17(3):e12423. doi:10.1111/gbb.12423 PubMed DOI

Baker JH, Schaumberg K, Munn-Chernoff MA. Genetics of Anorexia Nervosa. Curr Psychiatry Rep. 2017;19(11):84. doi:10.1007/s11920-017-0842-2 PubMed DOI PMC

Ouellet-Morin I, Cote SM, Vitaro F, et al. Effects of the MAOA gene and levels of exposure to violence on antisocial outcomes. Br J Psychiatry. 2016;208(1):42–48. doi:10.1192/bjp.bp.114.162081 PubMed DOI

Zhao M, Chen L, Yang J, et al. BDNF Val66Met polymorphism, life stress and depression: a meta-analysis of gene-environment interaction. J Affect Disord. 2018;227:226–235. doi:10.1016/j.jad.2017.10.024 PubMed DOI

Plana-Ripoll O, Bocker Pedersen C, Holtz Y, et al. Exploring comorbidity within mental disorders among a Danish National Population. JAMA Psychiatry. 2019;76(3):259–270. doi:10.1001/jamapsychiatry.2018.3658 PubMed DOI PMC

Anttila V, Bulik-Sullivan B, Finucane HK, The Brainstorm Consortium. Analysis of shared heritability in common disorders of the brain. Science. 2018;360(6395):eaap8757. doi:10.1126/science.aap8757 PubMed DOI PMC

Modinos G, Lyegbe C, Prata D, et al. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review. Schizophrenia Res. 2013;150(2–3):356–365. doi:10.1016/j.schres.2013.09.010 PubMed DOI

Uher R, Zwicker A. Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry. 2017;16(2):121–129. doi:10.1002/wps.20436 PubMed DOI PMC

Huh HJ, Kim KH, Lee HK, Chae JH. The relationship between childhood trauma and the severity of adulthood depression and anxiety symptoms in a clinical sample: the mediating role of cognitive emotion regulation strategies. J Affect Disord. 2017;213:44–50. doi:10.1016/j.jad.2017.02.009 PubMed DOI

Costa DL, Yetter N, DeSomer H. Intergenerational transmission of paternal trauma among US Civil War ex-POWs. Proc Natl Acad Sci U S A. 2018;115(44):11215–11220. doi:10.1073/pnas.1803630115 PubMed DOI PMC

He K, Guo C, Guo M, et al. Identification of serum microRNAs as diagnostic biomarkers for schizophrenia. Hereditas. 2019;156:23. doi:10.1186/s41065-019-0099-3 PubMed DOI PMC

Fries GR, Carvalho AF, Quevedo J. The miRNome of bipolar disorder. J Affect Disord. 2018;233:110–116. doi:10.1016/j.jad.2017.09.025 PubMed DOI

Ferrua CP, Giorgi R, da Rosa LC, et al. MicroRNAs expressed in depression and their associated pathways: a systematic review and a bioinformatics analysis. J Chem Neuroanat. 2019;100:101650. doi:10.1016/j.jchemneu.2019.101650 PubMed DOI PMC

Murphy CP, Singewald N. Role of MicroRNAs in Anxiety and Anxiety-Related Disorders. Curr Top Behav Neurosci. Epub 2019. 1–35. PubMed

Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013. PubMed

Chu C, Murdock MH, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574(7779):543–548. doi:10.1038/s41586-019-1644-y PubMed DOI PMC

Dickerson F, Severance E, Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun. 2017;62:46–52. doi:10.1016/j.bbi.2016.12.010 PubMed DOI PMC

Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;99:50–61. doi:10.1016/j.jpsychires.2018.01.013 PubMed DOI PMC

Lu Q, Lai J, Lu H, et al. Gut microbiota in bipolar depression and its relationship to brain function: an advanced exploration. Front Psychiatry. 2019;10:784. doi:10.3389/fpsyt.2019.00784 PubMed DOI PMC

Mansour MA, Sabbah NA, Mansour SA, Ibrahim AM. MicroRNA-199b expression level and coliform count in irritable bowel syndrome. IUBMB Life. 2016;68(5):335–342. doi:10.1002/iub.1495 PubMed DOI

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th(DSM-5) ed. Washington, D.C.: American Psychiatric Association Publishing; 2013.

European Network of National Networks studying Gene-Environment Interactions in Schizophrenia (EU-GEI). Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull. 2014;40(4):729–736. doi:10.1093/schbul/sbu069 PubMed DOI PMC

Quattrone D, Di Forti M, Gayer-Anderson C, et al. Transdiagnostic dimensions of psychopathology at first episode psychosis: findings from the multinational EU-GEI study. Psychol Med. 2019;49(8):1378–1391. doi:10.1017/S0033291718002131 PubMed DOI PMC

Padmanabhan JL, Shah JL, Tandon N, Keshavan MS. The “polyenviromic risk score”: aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects. Schizophr Res. 2017;181:17–22. doi:10.1016/j.schres.2016.10.014 PubMed DOI PMC

Jongsma HE, Turner C, Kirkbride JB, Jones PB. International incidence of psychotic disorders, 2002–17: a systematic review and meta-analysis. Lancet Public Health. 2019;4(5):e229–e244. doi:10.1016/S2468-2667(19)30056-8 PubMed DOI PMC

Boden JM, Fergusson DM. Alcohol and depression. Addiction. 2011;106(5):906–914. doi:10.1111/j.1360-0443.2010.03351.x PubMed DOI

Chang-Quan H, Xue-Mei Z, Bi-Rong D, Zhen-Chan L, Ji-Rong Y, Qing-Xiu L. Health status and risk for depression among the elderly: a meta-analysis of published literature. Age Ageing. 2010;39(1):23–30. doi:10.1093/ageing/afp187 PubMed DOI

Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: an umbrella review of evidence from meta-analyses and Mendelian randomization studies. J Psychiatr Res. 2018;103:189–207. doi:10.1016/j.jpsychires.2018.05.020 PubMed DOI

Luger TM, Suls J, Vander Weg MW. How robust is the association between smoking and depression in adults? A meta-analysis using linear mixed-effects models. Addict Behav. 2014;39(10):1418–1429. doi:10.1016/j.addbeh.2014.05.011 PubMed DOI

Marangoni C, Hernandez M, Faedda GL. The role of environmental exposures as risk factors for bipolar disorder: a systematic review of longitudinal studies. J Affect Disord. 2016;193:165–174. doi:10.1016/j.jad.2015.12.055 PubMed DOI

Perry DC, Sturm VE, Peterson MJ, et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124(2):511–526. doi:10.3171/2015.2.JNS14503 PubMed DOI PMC

Stubbs B, Koyanagi A, Hallgren M, et al. Physical activity and anxiety: a perspective from the World Health Survey. J Affect Disord. 2017;208:545–552. doi:10.1016/j.jad.2016.10.028 PubMed DOI

Swinnen SG, Selten JP. Mood disorders and migration: meta-analysis. Br J Psychiatry. 2007;190:6–10. doi:10.1192/bjp.bp.105.020800 PubMed DOI

Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34(3):407–419. doi:10.1038/ijo.2009.252 PubMed DOI

Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2014;99(1):181–197. doi:10.3945/ajcn.113.069880 PubMed DOI

Schuch FB, Vancampfort D, Firth J, et al. Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am J Psychiatry. 2018;175(7):631–648. doi:10.1176/appi.ajp.2018.17111194 PubMed DOI

Wallergard M, Jonsson P, Osterberg K, Johansson G. A virtual reality version of the trier social stress test: a pilot study. Presence-Teleop Virt Env. 2011;20(4):325–336. doi:10.1162/PRES_a_00052 PubMed DOI

Coulon N, Brailly-Tabard S, Walter M, Tordjman S. Altered circadian patterns of salivary cortisol in individuals with schizophrenia: a critical literature review. J Physiol Paris. 2016;110(4Pt B):439–447. doi:10.1016/j.jphysparis.2017.05.002 PubMed DOI

Asok M, Natarajan PM, Saeed A, et al. A study on comparison of salivary cortisol circadian rhythm in periodontal diseases with external stressors and clinical parameters. Biomed Pharmacol J. 2016;9(2):679–688. doi:10.13005/bpj/990 DOI

Bonczek O, Bielik P, Krejci P, et al. Next generation sequencing reveals a novel nonsense mutation in MSX1 gene related to oligodontia. PLoS One. 2018;13(9):e0202989. doi:10.1371/journal.pone.0202989 PubMed DOI PMC

Zapletalova M, Kasparovska J, Krizova L, Kasparovsky T, Sery O, Lochman J. Bacterial community dynamics in a rumen fluid bioreactor during in-vitro cultivation. J Biotechnol. 2016;234:43–49. doi:10.1016/j.jbiotec.2016.07.013 PubMed DOI

Schmidt-Kastner R, van Os J, Esquivel G, Steinbusch HW, Rutten BP. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry. 2012;17:1194–1205. doi:10.1038/mp.2011.183 PubMed DOI

Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci. 2014;8:5. doi:10.3389/fncel.2014.00005 PubMed DOI PMC

Hosak L. New findings in the genetics of schizophrenia. World J Psychiatry. 2013;3(3):57–61. doi:10.5498/wjp.v3.i3.57 PubMed DOI PMC

Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic modifications in stress response genes associated with childhood trauma. Front Psychiatry. 2019;10:808. doi:10.3389/fpsyt.2019.00808 PubMed DOI PMC

Sery O, Lochman J, Povova J, Janout V, Plesnik J, Balcar VJ. Association between 5q23.2-located polymorphism of CTXN3 gene (Cortexin 3) and schizophrenia in European-Caucasian males; implications for the aetiology of schizophrenia. Behav Brain Funct. 2015;11:10. doi:10.1186/s12993-015-0057-9 PubMed DOI PMC

Lochman J, Plesnik J, Janout V, et al. Interactive effect of MTHFR and ADRA2A gene polymorphisms on pathogenesis of schizophrenia. Neuro Endocrinol Lett. 2013;34(8):792–797. PubMed

Sery O, Prikryl R, Castulík L, Stastny F. A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci. 2010;41(1):219–222. doi:10.1007/s12031-010-9327-z PubMed DOI

Lochman J, Balcar VJ, Stastny F, Sery O. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory regions of the ADRA2A, DRD3 and SNAP-25 genes. Psychiatry Res. 2013;205(1–2):7–12. doi:10.1016/j.psychres.2012.08.003 PubMed DOI

Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(Suppl1):4516–4522. doi:10.1073/pnas.1000080107 PubMed DOI PMC

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi:10.1128/AEM.01043-13 PubMed DOI PMC

Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC

McMurdie PJ, Holmes S, Watson M. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi:10.1371/journal.pone.0061217 PubMed DOI PMC

R Core Team. A Language and Environment for Statistical Computing. Vienna: R foundation for statistical computing; 2018.

Dudbridge F, Wray NR. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9(3):e1003348. doi:10.1371/journal.pgen.1003348 PubMed DOI PMC

Guloksuz S, Pries LK, Delespaul P, et al. Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study. World Psychiatry. 2019;18(2):173–182. doi:10.1002/wps.20629 PubMed DOI PMC

WMA Declaration of Helsinki – ethical principles for medical research involving human subjects [homepage on the Internet]. The World Medical Association; 2019. Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed March7, 2019.

Eurostat [homepage on the Internet]. The Czech Statistical Office; 2018. Available from: https://www.czso.cz/csu/czso/eurostat. Accessed March6, 2019.

The Czech Statistical Office [homepage on the Internet]. The Czech Statistical Office; 2018. Available from: https://www.czso.cz/csu/czso/cr_od_roku_1989_alkohol. Accessed March8, 2019.

No authors listed. Links between gut microbes and depression strengthened. Nature. 2019;566:7. doi:10.1038/d41586-019-00483-5 PubMed DOI

Lucas G. Gut thinking: the gut microbiome and mental health beyond the head. Microb Ecol Health Dis. 2018;29(2):1548250. doi:10.1080/16512235.2018.1548250 PubMed DOI PMC

Greenwood TA, Shutes-David A, Tsuang DW, et al. Endophenotypes in schizophrenia: digging deeper to identify genetic mechanisms. J Psychiatr Brain Sci. 2019;4(2). doi:10.20900/jpbs.20190005 PubMed DOI PMC

Goldstein BL, Klein DN. A review of selected candidate endophenotypes for depression. Clin Psychol Rev. 2014;34(5):417–427. PubMed PMC

Miskowiak KW, Kjaerstad HL, Meluken I, et al. The search for neuroimaging and cognitive endophenotypes: a critical systematic review of studies involving unaffected first-degree relatives of individuals with bipolar disorder. Neurosci Biobehav Rev. 2017;73:1–22. doi:10.1016/j.neubiorev.2016.12.011 PubMed DOI

Domschke K, Dannlowski U. Imaging genetics of anxiety disorders. Neuroimage. 2010;53(3):822–831. doi:10.1016/j.neuroimage.2009.11.042 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...