Association between 5q23.2-located polymorphism of CTXN3 gene (Cortexin 3) and schizophrenia in European-Caucasian males; implications for the aetiology of schizophrenia

. 2015 Mar 17 ; 11 () : 10. [epub] 20150317

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25889058
Odkazy

PubMed 25889058
PubMed Central PMC4367835
DOI 10.1186/s12993-015-0057-9
PII: 10.1186/s12993-015-0057-9
Knihovny.cz E-zdroje

BACKGROUND: The objective of the study was to examine several polymorphisms in DISC1 and CTNX3 genes as possible risk factors in schizophrenia. DISC1 (disrupted-in-schizophrenia 1) has been studied extensively in relation to mental disease while CTXN3, has only recently emerged as a potential "candidate" gene in schizophrenia. CTXN3 resides in a genomic region (5q21-34) known to be associated with schizophrenia and encodes a protein cortexin 3 which is highly enriched in brain. METHODS: We used ethnically homogeneous samples of 175 male patients and 184 male control subjects. All patients were interviewed by two similarly qualified psychiatrists. Controls were interviewed by one of the authors (O.S.). Genotyping was performed, following amplification by polymerase chain reaction (PCR), using fragment analysis in a standard commercial setting (Applied Biosystems, USA). RESULTS: We have found a statistically significant association between rs6595788 polymorphism of CTXN3 gene and the risk of schizophrenia; the presence of AG genotype increased the risk 1.5-fold. Polymorphisms in DISC1 gene showed only marginally statistically significant association with schizophrenia (rs17817356) or no association whatsoever (rs821597 and rs980989) while two polymorphisms (rs9661837 and rs3737597) were found to be only slightly polymorphic in the samples. CONCLUSION: Evidence available in the literature suggests that altered expression of cortexin 3, either alone, or in parallel with changes in DISC1, could subtly perturb GABAergic neurotransmission and/or metabolism of amyloid precursor protein (APP) in developing brain, thus potentially exposing the affected individual to an increased risk of schizophrenia later in life.

Zobrazit více v PubMed

Duff BJ, Macritchie KA, Moorhead TW, Lawrie SM, Blackwood DH. Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: a systematic review. Schizophr Res. 2013;147:1–13. doi: 10.1016/j.schres.2013.03.015. PubMed DOI

Lipina TV, Roder JC. Disrupted-in-schizophrenia (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehavior Rev. 2014;45:271–94. doi: 10.1016/j.neubiorev.2014.07.001. PubMed DOI

Hikida T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental ilnesses. Expert Opin Ther Targets. 2012;16:1151–60. doi: 10.1517/14728222.2012.719879. PubMed DOI PMC

Young-Pearse TL, Suth S, Luth ES, Sawa A, Selkoe DJ. Biochemical and functional interaction of DISC1 and APP regulates neuronal migration during mammalian cortical development. J Neurosci. 2010;30:10431–40. doi: 10.1523/JNEUROSCI.1445-10.2010. PubMed DOI PMC

Wang HT, Chang JW, Guo Z, Li BG. In silico-initiated cloning and molecular characterization of cortexin 3, a novel human gene specifically expressed in the kidney and brain, and well conserved in vertebrates. Int J Mol Med. 2007;20:501–10. PubMed

Panichareon B, Nakayama K, Iwamoto S, Thurakitwannakarn W, Sukhumsirichart W. Association of CTNX-SLC12A2 polymorphisms and schizophrenia in a Thai population. Behav Brain Functions. 2012;8:27. doi: 10.1186/1744-9081-8-27. PubMed DOI PMC

Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull. 2009;35:96–108. doi: 10.1093/schbul/sbn155. PubMed DOI PMC

Potkin SG, Macciardi F, Guffanti G, Wang Q, Turner JA, Lakatos A, et al. Identifying gene regulatory networks in schizophrenia. Neuroimage. 2009;53:839847. PubMed PMC

Straub RE, MacLean CJ, O‘Neill FA, Walsh D, Kendler KS. Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol Psychiatry. 1997;2:148–55. doi: 10.1038/sj.mp.4000258. PubMed DOI

Lewis CM, Levinson DL, Wise LH, DeLisi LE, Strau RE, Hovatta I, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. Am J Hum Genet. 2003;73:34–48. doi: 10.1086/376549. PubMed DOI PMC

Gladwin TE, Derks EM, Genetic Risk and Outcome of Psychosis (GROUP) Rietschel M, Mattheisen M, Breuer R, et al. Segment-wise genome-wide association analysis identifies a candidate region associated with schizophrenia in three independent samples. PLoS ONE 2. 2012;7:e38828. doi: 10.1371/journal.pone.0038828. PubMed DOI PMC

Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, et al. Interplay between DISC1 and GABA signalling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012;148:1051–64. doi: 10.1016/j.cell.2011.12.037. PubMed DOI PMC

Callicott JH, Feighery EL, Mattay VS, White MG, Che Q, Baranger DAA, et al. DISC1 and SLC12A2 interaction affects human hippocampal function and connectivity. J Clin Invest. 2013;123:2961–4. doi: 10.1172/JCI67510. PubMed DOI PMC

Lochman J, Balcar VJ, Šťastný F, Šerý O. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes. Psychiatry Res. 2013;205:7–12. doi: 10.1016/j.psychres.2012.08.003. PubMed DOI

Lochman J, Plesník J, Janout V, Povová J, Míšek I, Dvořáková D, et al. Interactive effect of MTHFR and ADRA2A gene polymorphisms on pathogenesis of schizophrenia. Neuroendocrinol Lett. 2013;34:792–7. PubMed

Šerý O, Přikryl R, Častulík L, Št‘astný F. A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci. 2010;41:219–22. doi: 10.1007/s12031-010-9327-z. PubMed DOI

Schumacher J, Laje G, Abou Jamra R, Becker T, Mühleisen TW, Vasilescu C, et al. The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet. 2009;18:2719–27. doi: 10.1093/hmg/ddp204. PubMed DOI PMC

Schosser A, Gaysina D, Cohen-Woods S, Chow PC, Martucci L, Craddock N, et al. Association of DISC1 and TSNAX genes and affective disorders in the depression case-control (DeCC) and bipolar affective case-control (BACCS) studies. Mol Psychiatry. 2010;15:844–9. doi: 10.1038/mp.2009.21. PubMed DOI

Carless MA, Glahn DC, Johnson MP, Curran JE, Bozaoglu K, Dyer TD, et al. Impact of DISC1 variation on neuroanatomical and neurocognitive phenotypes. Mol Psychiatry. 2011;16:1096–104. doi: 10.1038/mp.2011.37. PubMed DOI PMC

Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, et al. Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet. 2007;16:2517–28. doi: 10.1093/hmg/ddm207. PubMed DOI

Saetre P, Agartz I, De Franciscis A, Lundmark P, Djurovic S, Kähler A, et al. Association between a disrupted-in-schizophrenia 1 (DISC1) single nucleotide polymorphism and schizophrenia in a combined Scandinavian case-control sample. Schizophr Res. 2008;106:237–41. doi: 10.1016/j.schres.2008.08.024. PubMed DOI

Hoenicka J, Garrido E, Ponce G, Rodríguez-Jiménez R, Martínez I, Rubio G, et al. Sexually dimorphic interaction between the DRD1 and COMT genes in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:948–54. PubMed

Lecrubier Y, Sheehan DV, Weiller E, Amorim P, Bonora I, Sheehan K, et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: Reliability and validity according to the CIDI. Eur Psychiatry. 1997;12:224–31. doi: 10.1016/S0924-9338(97)83296-8. DOI

Jánošíková B, Zavadáková P, Kožich V. Single-nucleotide polymorphisms in genes relating to homocysteine metabolism: how applicable are public SNP databases to a typical European population? Eur J Hum Genet. 2005;13:86–95. doi: 10.1038/sj.ejhg.5201282. PubMed DOI

Coulter PM, Bautista EA, Margulies JE, Watson JB. Identification of cortexin: a novel neuron-specific 82-residue membrane protein enriched in rodent cerebral cortex. J Neurochem. 1993;61:756–9. doi: 10.1111/j.1471-4159.1993.tb02183.x. PubMed DOI

Chakraborty S, Khan GA, Karmohapatra SK, Bhattacharaya R, Bhattacharaya G, Kumar Sinha A. Purification and mechanism of action of “cortexin“, a novel antihypertensive protein hormone from kidney and its role in essential hypertension in men. J Amer Soc Hypertens. 2009;3:119–32. doi: 10.1016/j.jash.2008.11.002. PubMed DOI

Ghosh R, Bhattacharyya M, Khan G, Chakraborty S, Bhattacharya R, Maji UK, et al. Diagnosis of essential hypertension in humans by the determination of plasma renal cortexin using enzyme-linked immunosorbent assay. Clin Lab. 2013;59:475–81. PubMed

Chalisova NI, Khavinson VK. Studies of cytokines in nerve tissue cultures. Neurosci Behav Physiol. 2000;30:261–5. doi: 10.1007/BF02471779. PubMed DOI

Evzel‘man MA, Aleksandrova NA. Cognitive disorders and their correction in patients with ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2013;113:36–9. PubMed

Almasy L, Gur RC, Haack K, Cole SA, Calkins ME, Peralta JM, et al. A genome screen for quantitative trait loci influencing schizophrenia and neurocognitive phenotypes. Am J Psychiatry. 2008;165:1185–92. doi: 10.1176/appi.ajp.2008.07121869. PubMed DOI PMC

Balcar VJ, Dammasch I, Wolff JR. Is there a non-synaptic component in the K+-stimulated release of GABA in the developing rat cortex? Brain Res. 1983;312:309–11. doi: 10.1016/0165-3806(83)90148-7. PubMed DOI

Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006;7:687–96. doi: 10.1038/nrn1954. PubMed DOI

Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic persepctives. Frontiers Cell Sci. 2012;8:1–23. PubMed PMC

Jelitai M, Madarsz E. The role of GABA in the early neuronal development. In: Dirk M, Drossche A, editors. “GABA in Autism and Related Disorders“. 2005. pp. 27–62. PubMed

Nuñez JL, McCarthy MM. Evidence for an extended duration of GABA-mediated excitation in the developing male v. female hippocampus. Dev Neurobiol. 2007;67:1879–90. doi: 10.1002/dneu.20567. PubMed DOI PMC

Chouraki V, De Bruijn RF, Chapuis J, Bis JC, Reitz C, Schraen S, et al. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly. Mol Psychiatry. 2014;19:1326–35. doi: 10.1038/mp.2013.185. PubMed DOI PMC

Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013;5:1–9. PubMed

Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol. 2013;51:169–88. doi: 10.5114/fn.2013.37702. PubMed DOI

Povová J, Ambrož P, Bar M, Pavuková V, Šerý O, Tomášková H, et al. Epidemiological of and risk factors for Alzheimer’s disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156:108–14. doi: 10.5507/bp.2012.055. PubMed DOI

Nalivaeva NN, Turner AJ. The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Lett. 2013;587:2046–2054. doi: 10.1016/j.febslet.2013.05.010. PubMed DOI

Priller C, Bauer T, Mittereger G, Krebs B, Kretzschamr HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26:7217–21. PubMed PMC

Arliker B, Müller U. The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. Neurodegenerative Dis. 2006;3:239–46. doi: 10.1159/000095262. PubMed DOI

Young-Pearse TL, Bai J, Chang R, LoTurco JJ, Selkoe DJ. A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci. 2007;27:14459–69. doi: 10.1523/JNEUROSCI.4701-07.2007. PubMed DOI PMC

Cousins SL, Hoey SEA, Stephenson FA, Perkington MS. Amyloid precursor protein associates with assabled NR2A- and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery. J Neurochem. 2009;111:1501–13. doi: 10.1111/j.1471-4159.2009.06424.x. PubMed DOI

Vrajová M, Štastný F, Horáček J, Lochman J, Šerý O, Peková S, et al. Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res. 2010;35:994–1002. doi: 10.1007/s11064-010-0145-z. PubMed DOI

Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: Convergence on synaptic pathways involved in plasticity. Biol Psych 2014, In press PubMed

Šerý O, Povová J, Balcar VJ. Perspectives in genetic prediction of Alzheimer’s disease. Neuroendocrinol Lett. 2014;35:101–8. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gene-Environment Interactions in Major Mental Disorders in the Czech Republic

. 2020 ; 16 () : 1147-1156. [epub] 20200506

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...