Carp Edema Virus Infection Is Associated With Severe Metabolic Disturbance in Fish

. 2021 ; 8 () : 679970. [epub] 20210519

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34095283

Significant mortalities associated with emerging viral diseases are challenging the economy of common carp aquaculture. As such, there is an increased need to disentangle how infected fish cope with progressive disease pathology and lose the ability for homeostatic maintenance of key physiological parameters. A natural carp edema virus (CEV) infection outbreak at a carp fish farm provided an opportunity to examine diseased and healthy carp in the same storage pond, thereby contributing to our better understanding of CEV disease pathophysiology. The disease status of fish was determined using PCR-based virus identification combined with analysis of gill pathology. Compared with healthy control carp, the blood chemistry profile of CEV-infected fish revealed major disruptions in electrolyte and acid-base balance (i.e., hyponatraemia, hypochloraemia, hyperphosphatemia, elevated pH, base excess, and anion gap and decreased partial dissolved carbon dioxide). In addition, we recorded hyperproteinaemia, hyperalbuminaemia, hypotonic dehydration, endogenous hyperammonaemia, and decreased lactate along with increased creatinine, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Red blood cell associated hematology variables were also elevated. The multivariate pattern of responses for blood chemistry variables (driven by sodium, pH, partial dissolved carbon dioxide, ammonia, and albumin in the principal component analysis) clearly discriminated between CEV-infected and control carp. To conclude, we show that CEV infection in carp exerts complex adverse effects and results in severe metabolic disturbance due to the impaired gill respiratory and excretory functioning.

Zobrazit více v PubMed

Adamek M, Oschilewski A, Wohlsein P, Jung-Schroers V, Dawson A, Gela D, et al. . Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet Res. (2017) 48:12. 10.1186/s13567-017-0416-7 PubMed DOI PMC

OIE - World Organisation for Animal Health . Manual of Diagnostic Tests for Aquatic Animals. (2019). Available online at: https://www.oie.int/standard-setting/aquatic-manual/access-online/ (accessed February 21, 2021).

Gilad O, Yun S, Zagmutt-Vergara FJ, Leutenegger CM, Bercovier H, Hedrick RP. Concentrations of a Koi herpesvirus (KHV) in tissues of experimentally-infected Cyprinus carpio koi as assessed by real-time TaqMan PCR. Dis Aquat Org. (2004) 60:179–87. 10.3354/dao060179 PubMed DOI

Jung-Schroers V, Adamek M, Teitge F, Hellmann J, Bergmann SM, Schutze H, et al. . Another potential carp killer?: Carp Edema Virus disease in Germany. BMC Vet Res. (2015) 11:114. 10.1186/s12917-015-0424-7 PubMed DOI PMC

Lewisch E, Gorgoglione B, Way K, El-Matbouli M. Carp Edema Virus/Koi Sleepy Disease: an emerging disease in Central-East Europe. Transbound Emerg Dis. (2015) 62:6–12. 10.1111/tbed.12293 PubMed DOI

Adamek M, Baska F, Vincze B, Steinhagen D. Carp edema virus from three genogroups is present in common carp in Hungary. J Fish Dis. (2018) 41:463–8. 10.1111/jfd.12744 PubMed DOI

Matras M, Borzym E, Stone D, Way K, Stachnik M, Maj-Paluch J, et al. . Carp edema virus in Polish aquaculture - evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). J Fish Dis. (2017) 40:319–25. 10.1111/jfd.12518 PubMed DOI

Radosavljevic V, Adamek M, Milicevic V, Maksimovic-Zoric J, Steinhagen D. Occurrence of two novel viral pathogens (CEV and CyHV-2) affecting Serbian cyprinid aquaculture and ichthyofauna. J Fish Dis. (2018) 41:851–4. 10.1111/jfd.12789 PubMed DOI

Way K, Haenen O, Stone D, Adamek M, Bergmann SM, Bigarre L, et al. . Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis Aquat Org. (2017) 126:155–66. 10.3354/dao03164 PubMed DOI

Matějíčková K, Pojezdal L, Pokorová D, Reschová S, Piačková V, Palíková M, et al. . Carp oedema virus disease outbreaks in Czech and Slovak aquaculture. J Fish Dis. (2020) 43:971–8. 10.1111/jfd.13179 PubMed DOI

Adams A, Thompson KD. Recent applications of biotechnology to novel diagnostics for aquatic animals. Rev Sci Tech Off Int Epizoot. (2008) 27:197–209. 10.20506/rst.27.1.1792 PubMed DOI

Pragyan D, Bajpai V, Suman K, Mohanty J, Sahoo PK. A review of current understanding on carp edema virus (CEV): a threatful entity in disguise. Int J Fish Aquat Stud. (2019) 7:87–93.

Seno R, Hata N, Oyamatsu T, Fukuda H. Curative effect of 0.5% salt water treatment on carp, Cyprinus carpio, infected with Carp Edema Virus (CEV) results mainly from reviving the physiological condition of the host. Suisanzoshoku. (2003) 51:123–4. 10.11233/aquaculturesci1953.51.123 DOI

Groff JM, Zinkl JG. Hematology and clinical chemistry of cyprinid fish: common carp and goldfish. Vet Clin North Am Exot Anim Pract. (1999) 2:741–76. 10.1016/S1094-9194(17)30120-2 PubMed DOI

Bercovier H, Fishman Y, Nahary R, Sinai S, Zlotkin A, Eyngor M, et al. . Cloning of the koi herpesvirus (KHV) gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis. BMC Microbiol. (2005) 5:13. 10.1186/1471-2180-5-13 PubMed DOI PMC

Tamura K, Stecher G, Peterson D, Filipsky A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. (2013) 30:2725–9. 10.1093/molbev/mst197 PubMed DOI PMC

Svobodová Z, Vykusová B, Modrá H, Jarkovský J, Smutná M. Haematological and biochemical profile of harvest-size carp during harvest and post-harvest storage. Aquac Res. (2006) 37:959–65. 10.1111/j.1365-2109.2006.01511.x DOI

Adamek M, Jung-Schroers V, Hellmann J, Teitge F, Bergmann SM, Runge M, et al. . Concentration of carp edema virus (CEV) DNA in koi tissues affected by koi sleepy disease (KSD). Dis Aquat Org. (2016) 119:245–51. 10.3354/dao02994 PubMed DOI

Woods HA, Wilson JK. An information hypothesis for the evolution of homeostasis. Trends Ecol Evol. (2013) 28:283–9. 10.1016/j.tree.2012.10.021 PubMed DOI

Gilmour KM. New insights into the many functions of carbonic anhydrase in fish gills. Respir Physiol Neurobiol. (2012) 184:223–30. 10.1016/j.resp.2012.06.001 PubMed DOI

Ip YA, Chew SF. Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol. (2010) 1:134. 10.3389/fphys.2010.00134 PubMed DOI PMC

Randall DJ, Ip YK. Ammonia as a respiratory gas in water and air-breathing fishes. Respir Physiol Neuro. (2006) 154:216–25. 10.1016/j.resp.2006.04.003 PubMed DOI

Sardella BA, Brauner CJ. The osmo-respiratory compromise in fish: the effects of physiological state and the environment. In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG. editors. Fish Respiration and Environment. Enfield, NH: Science Publishers; (2007). p. 147–65.

Campbell TW. Clinical chemistry of fish and amphibians. In: Thrall MA, Weiser G, Allison RW, Campbell TW. editors. Veterinary Hematology and Clinical Chemistry, 2nd edn. Hoboken, NJ: John Wiley & Sons; (2012). p. 607–14.

De Smet H, Blust R, Moens L. Absence of albumin in the plasma of the common carp Cyprinus carpio: binding of fatty acids to high density lipoprotein. Fish Physiol Biochem. (1998) 19:71–81. 10.1023/A:1007734127146 DOI

Nagano H, Hosaka K, Shukuya R. Comparative biochemistry of serum albumin. A serum albumin-like protein from carp, Cyprinus carpio. Comp Biochem Physiol B-Biochem Mol Biol. (1975) 50:573–8. 10.1016/0305-0491(75)90092-9 PubMed DOI

Tripathi N, Latimer K, Lewis T, Burnley VV. Biochemical reference intervals for koi (Cyprinus carpio). Comp Clin Path. (2003) 12:160–5. 10.1007/s00580-003-0495-x DOI

Smutná M, Vorlová L, Svobodová Z. Pathobiochemistry of ammonia in the internal environment of fish (Review). Acta Vet BRNO. (2002) 71:169–81. 10.2754/avb200271020169 DOI

Randall DJ, Tsui TKN. Ammonia toxicity in fish. Mar Pollut Bull. (2002) 45:17–23. 10.1016/S0025-326X(02)00227-8 PubMed DOI

McKenzie DJ, Shingles A, Claireaux G, Domenici P. Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiol Biochem Zool. (2009) 82:353–62. 10.1086/590218 PubMed DOI

Wright PA, Wood CM. Seven things fish know about ammonia and we don't. Respir Physiol Neurobiol. (2012) 184:231–40. 10.1016/j.resp.2012.07.003 PubMed DOI

Pottinger TG. Changes in blood cortisol, glucose and lactate in carp retained in anglers' keepnets. J Fish Biol. (1998) 53:728–42. 10.1006/jfbi.1998.0737 DOI

Wells RMG, Pankhurst NW. Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein as stress indicators in fish. J World Aquacult Soc. (1999) 30:276–84. 10.1111/j.1749-7345.1999.tb00876.x DOI

Dando P. Lactate metabolism in fish. J Mar Biol Assoc UK. (1969) 49:209–23. 10.1017/S002531540004652X DOI

Rodrigues RA, Silva ALD, Siqueira MS, Pilarski F, Leal CRB, Kuibida KV, et al. . Hematological, biochemical, and histopathological responses in sorubim Pseudoplatystoma spp. experimentally infected with Lactococcus garvieae. Aquacult Int. (2020) 28:1907–23. 10.1007/s10499-020-00566-5 DOI

Rehulka J. Haematological analyses in rainbow trout Oncorhynchus mykiss affected by viral haemorrhagic septicaemia (VHS). Dis Aquat Organ. (2003) 56:185–93. 10.3354/dao056185 PubMed DOI

Rehulka J, Minarík B. Blood parameters in brook trout Salvelinus fontinalis (Mitchill, 1815), affected by columnaris disease. Aquac Res. (2007) 38:1182–97. 10.1111/j.1365-2109.2007.01786.x DOI

Shah SL. Impairment in the haematological parameters of tench (Tinca tinca) infected by Saprolegnia spp. Turk J Vet Anim Sci. (2010) 34:313–8. 10.3906/vet-0706-4 DOI

Witeska M. Anemia in teleost fishes. Bull Eur Assoc Fish Pathol. (2015) 35:148–60.

Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. The pathobiome in animal and plant diseases. Trends Ecol Evol. (2019) 34:996–1008. 10.1016/j.tree.2019.07.012 PubMed DOI PMC

Gorgoglione B, Bailey C, Fast MD, Bass D, Saraiva M, Adamek M, et al. . Co-infections and multiple stressors in fish: EAFP 19th International Conference on Diseases of Fish and Shellfish special edition workshop report. Bull Eur Assoc Fish Pathol. (2020) 40:4–19.

Negenborn J, van der Marel MC, Ganter M, Steinhagen D. Cyprinid herpesvirus-3 (CyHV-3) disturbs osmotic balance in carp (Cyprinus carpio L.) - a potential cause of mortality. Vet Microbiol. (2015) 177:280–8. 10.1016/j.vetmic.2015.03.018 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...