Case report: Carp edema virus infection in overwintering fish

. 2025 ; 12 () : 1532861. [epub] 20250214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40027355

Carp Edema Virus (CEV) has emerged as a viral threat to the sustainability of European pond fisheries, with water temperature and stress playing a crucial role in disease outbreaks. Here, we report on a natural CEV infection in overwintering common carp (Cyprinus carpio; n = 1,160) broodstock that began to manifest clinically at an unusually low water temperature. In the initial outbreak phase, young broodstock fish exhibited abnormal activity and shoaling at the pond edge. While the water temperature under a discontinuous thin ice layer was 2°C, no deaths were observed. The first fish examined, using standard molecular methods for virological diagnosis, tested negative for CEV. Despite showing clinical signs suggestive of CEV infection, there was no gross pathology except for an increased amount of gill mucus, suggesting that CEV molecular detection may be dependent on infection progression. A shift from a period of cold stress to warming pond water temperatures may have influenced the subsequent progression of the disease. Ongoing clinical signs affected a large part of the population, which remained lethargic and gathered close to the banks. Subsequent virological testing performed ca. 3 weeks after the outbreak and first observation of clinically diseased fish detected the CEV genogroup I agent. CEV-driven die-offs occurred gradually as water temperatures increased to 8°C, with mortalities continuing for ca. 1 month. Interestingly, Přerov scaly carp and Hungarian mirror carp M2 strains differed significantly in mortality rates, at 30 and 60%, respectively. We tested a novel virus detection method, based on loop-mediated isothermal amplification (LAMP) of primers targeting the CEV genogroup I p4A gene, for applicability in the field. Samples from moribund fish, cadavers, and pond water all tested positive, with samples positive using LAMP subsequently confirmed by qPCR. To summarize, our data suggest it may be challenging to detect CEV DNA in both the first carp showing signs and surviving carp; scaly and scaleless carp show differential susceptibility to CEV infection; very low water temperatures of 2-4°C permit CEV infection in common carp; the LAMP method is applicable for rapid on-site CEV detection in clinical and environmental samples.

Zobrazit více v PubMed

Pörtner HO, Farrell AP. Physiology and climate change. Science. (2008) 322:690–2. doi: 10.1126/science.1163156, PMID: PubMed DOI

Brander KM. Global fish production and climate change. Proc Natl Acad Sci USA. (2007) 104:19709–14. doi: 10.1073/pnas.0702059104, PMID: PubMed DOI PMC

Ficke AD, Myrick CA, Hansen LJ. Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fisher. (2007) 17:581–613. doi: 10.1007/s11160-007-9059-5 DOI

Marcos-López M, Gale P, Oidtmann BC, Peeler E. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound Emerg Dis. (2010) 57:293–304. doi: 10.1111/j.1865-1682.2010.01150.x, PMID: PubMed DOI

Bowden TJ, Thompson KD, Morgan AL, Gratacap RML, Nikoskelainen S. Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immun. (2007) 22:695–706. doi: 10.1016/j.fsi.2006.08.016, PMID: PubMed DOI

Scharsack JP, Franke F. Temperature effects on teleost immunity in the light of climate change. J Fish Biol. (2022) 101:780–96. doi: 10.1111/jfb.15163, PMID: PubMed DOI

Karvonen A, Rintamäki P, Jokela J, Valtonen ET. Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. Int J Parasitol. (2010) 40:1483–8. doi: 10.1016/j.ijpara.2010.04.015, PMID: PubMed DOI

Lõhmus M, Björklund M. Climate change: what will it do to fish—parasite interactions? Biol J Linn Soc. (2015) 116:397–411. doi: 10.1111/bij.12584 DOI

Panicz R, Całka B, Cubillo A, Ferreira JG, Guilder J, Kay S, et al. . Impact of climate-driven temperature increase on inland aquaculture: application to land-based production of common carp (Cyprinus carpio L.). Transbound Emerg Dis. (2022) 69:e2341–50. doi: 10.1111/tbed.14577, PMID: PubMed DOI

Way K, Haenen O, Stone D, Adamek M, Bergmann S, Bigarré L, et al. . Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis Aquat Org. (2017) 126:155–66. doi: 10.3354/dao03164, PMID: PubMed DOI

Abdelsalam EEE, Piačková V. Carp edema virus: host selection and interaction, and potential factors affecting its introduction to the common carp population, distribution, and survival. Aquaculture. (2023) 563:739009. doi: 10.1016/j.aquaculture.2022.739009 DOI

Adamek M, Heling M, Bauer J, Teitge F, Bergmann SM, Kleingeld DW, et al. . It is everywhere—a survey on the presence of carp edema virus in carp populations in Germany. Transbound Emerg Dis. (2022) 69:2227–41. doi: 10.1111/tbed.14225, PMID: PubMed DOI

Jung-Schroers V, Adamek M, Teitge F, Hellmann J, Bergmann SM, Schütze H, et al. . Another potential carp killer?: carp edema virus disease in Germany. BMC Vet Res. (2015) 11:114. doi: 10.1186/s12917-015-0424-7, PMID: PubMed DOI PMC

Lewisch E, Gorgoglione B, Way K, El-Matbouli M. Carp edema virus/koi sleepy disease: an emerging disease in central-East Europe. Transbound Emerg Dis. (2015) 62:6–12. doi: 10.1111/tbed.12293, PMID: PubMed DOI

Pikula J, Pojezdal L, Papezikova I, Minarova H, Mikulikova I, Bandouchova H, et al. . Carp edema virus infection is associated with severe metabolic disturbance in fish. Front Vet Sci. (2021) 8:679970. doi: 10.3389/fvets.2021.679970, PMID: PubMed DOI PMC

Papežíková I, Piačková V, Dyková I, Baloch AA, Kroupová HK, Zusková E, et al. . Clinical and laboratory parameters of carp edema virus disease: a case report. Viruses Basel. (2023) 15:1044. doi: 10.3390/v15051044, PMID: PubMed DOI PMC

Palíková M, Pojezdal Ľ, Dávidová-Geržová L, Nováková V, Pikula J, Papežíková I, et al. . Carp edema virus infection associated gill pathobiome: a case report. J Fish Dis. (2022) 45:1409–17. doi: 10.1111/jfd.13670, PMID: PubMed DOI

Wetzel RG. Limnology: Lake and river ecosystems. London: Academic Press; (2001).

Matras M, Borzym E, Stone D, Way K, Stachnik M, Maj-Paluch J, et al. . Carp edema virus in polish aquaculture – evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). J Fish Dis. (2017) 40:319–25. doi: 10.1111/jfd.12518, PMID: PubMed DOI

APHA . Standard methods for the examination of water and wastewater. 20th ed. Washington DC: American Public Health Association, American Water Works Association and Water Environmental Federation; (1998).

Adams A, Thompson K. Recent applications of biotechnology to novel diagnostics for aquatic animals. Rev Sci Tech Off Int Epiz. (2008) 27:197–209. doi: 10.20506/rst.27.1.1792 PubMed DOI

Cano I, Worswick J, Mulhearn B, Stone D, Wood G, Savage J, et al. . A seasonal study of koi herpesvirus and koi sleepy disease outbreaks in the United Kingdom in 2018 using a pond-side test. Animals. (2021) 11:459. doi: 10.3390/ani11020459, PMID: PubMed DOI PMC

Machat R, Pojezdal L, Piackova V, Faldyna M. Carp edema virus and immune response in carp (Cyprinus carpio): current knowledge. J Fish Dis. (2021) 44:371–8. doi: 10.1111/jfd.13335, PMID: PubMed DOI

Adamek M, Oschilewski A, Wohlsein P, Jung-Schroers V, Teitge F, Dawson A, et al. . Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet Res. (2017) 48:12. doi: 10.1186/s13567-017-0416-7, PMID: PubMed DOI PMC

Piačková V, Flajšhans M, Pokorová D, Reschová S, Gela D, Čížek A, et al. . Sensitivity of common carp, Cyprinus carpio L., strains and crossbreeds reared in the Czech Republic to infection by cyprinid herpesvirus 3 (CyHV-3; KHV). J Fish Dis. (2013) 36:75–80. doi: 10.1111/jfd.12007, PMID: PubMed DOI

WOAH . Manual of diagnostic tests for aquatic animals: Infection with koi herpesvirus. Paris: Office International des Epizooties; (2024).

Matras M, Stachnik M, Borzym E, Maj-Paluch J, Reichert M. Distribution of carp edema virus in organs of infected juvenile common carp. J Vet Res. (2023) 67:333–7. doi: 10.2478/jvetres-2023-0049, PMID: PubMed DOI PMC

Adamek M, Matras M, Jung-Schroers V, Teitge F, Heling M, Bergmann SM, et al. . Comparison of PCR methods for the detection of genetic variants of carp edema virus. Dis Aquat Org. (2017) 126:75–81. doi: 10.3354/dao03152, PMID: PubMed DOI

Bohara K, Yadav AK, Joshi P. Detection of fish pathogens in freshwater aquaculture using eDNA methods. Diversity. (2022) 14:1015. doi: 10.3390/d14121015 DOI

Littlefair JE, Hrenchuk LE, Blanchfield PJ, Rennie MD, Cristescu ME. Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Mol Ecol. (2021) 30:3083–96. doi: 10.1111/mec.15623, PMID: PubMed DOI

Longshaw M, Feist S, Oidtmann B, Stone D. Applicability of sampling environmental DNA for aquatic diseases. Bull Eur Assoc Fish Pathol. (2012) 32:69–76.

Turner CR, Uy KL, Everhart RC. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol Conserv. (2015) 183:93–102. doi: 10.1016/j.biocon.2014.11.017 DOI

Gomes GB, Hutson KS, Domingos JA, Chung C, Hayward S, Miller TL, et al. . Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms. Aquaculture. (2017) 479:467–73. doi: 10.1016/j.aquaculture.2017.06.021 DOI

Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al. . Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. (2014) 29:358–67. doi: 10.1016/j.tree.2014.04.003 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace