Carp edema virus infection associated gill pathobiome: A case report

. 2022 Oct ; 45 (10) : 1409-1417. [epub] 20220616

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35708022

Grantová podpora
CZ.02.1.01/0.0/0.0/16_0 19/0000869 PROFISH

Understanding disease aetiology and pathologic mechanisms is essential for fish health evaluation. Carp edema virus (CEV) is the causative agent of a disease (CEVD) responsible for high mortality rates in both wild and cultured common carp Cyprinus carpio. Inspection of two carp specimens from a pond with high fish mortality revealed CEV infection in both the host and its ectoparasite (Argulus foliaceus). In addition to flavobacteria, well known to be associated with gill lesions, we found that free-living eukaryotes (amoebae and ciliates) and a temporary parasite (Ichthyobodo spp.) colonizing the gills may also contribute to alterations in gill structure and/or function, either directly, through firm (Ichthyobodo) or weak (amoebae) attachment of trophozoites to the gill epithelium, or indirectly, through carriage of pathogenic bacteria. Bacterial assemblages rich in families and genera, with predominance of Cetobacterium spp. in low-intensity alteration of the gill tissue and of Flavobacterium spp. in gills with extensive necrotic lesions, were detected in gills and within the cytoplasm of associated amoebae using high-throughput sequencing. Quantitative PCR indicated F. swingsii as the prevailing flavobacterial species within amoebae from less affected gills and F. psychrophilum within amoebae from extensively affected gills. This case study suggests that eukaryotic organisms as part of the gill pathobiome may also contribute to irreversible gill lesions seen in CEVD. Emphasizing the complexity of mutual relationships between bacterial assemblages and eukaryotic co-pathogens, further studies regarding factors that trigger pathology and influence severity in the CEV-positive carp are needed.

Zobrazit více v PubMed

Adamek, M., Oschilewski, A., Wohlsein, P., Jung-Schroers, V., Teitge, F., Dawson, A., Gela, D., Piackova, V., Kocour, M., Adamek, J., Bergmann, S. M., & Steinhagen, D. (2017). Experimental infections of different carp strains with the carp edema virus (CEV) give insight into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Veterinary Research, 48, 12. https://doi.org/10.1186/s13567-017-0416-7

Adamek, M., Teitge, F., Jung-Schroers, V., Heling, M., Gela, D., Piačková, V., Kocour, M., & Steinhagen, D. (2018). Flavobacteria as secondary pathogens in carp suffering from koi sleepy disease. Journal of Fish Diseases, 41, 1631-1642. https://doi.org/10.1111/jfd.12872

Bass, D., Stentiford, G. D., Wang, H., Koskella, B., & Tyler, C. R. (2019). The pathobiome in animal and plant diseases. Trends in Ecology & Evolution, 34, 996-1008. https://doi.org/10.1016/j.tree.2019.07.012

Bass, D., Tyler, C., Stentiford, G. (2018). The pathobiome in animal and plant health. In 19th International Conference on Disease of Fish and Shellfish, 104-O. Abstract book p. 112.

Cameron, A. (2002). Survey toolbox for aquatic animal diseases. A practical manual and software package. ACIAR Monograph No. 94, Canberra.

Dyková, I., & Kostka, M. (2013). Illustrated guide to culture collection of free-living amoebae (p. 363). Academia Praha.

Gilad, O., Yun, S., Zagmutt-Vergara, F. J., Leutenegger, C. M., Bercovier, H., & Hedrick, R. P. (2004). Concentrations of a koi herpesvirus (KHV) in tissues of experimentally-infected Cyprinus carpio koi as assessed by real-time TagMan PCR. Diseases of Aquatic Organisms, 60, 179-187. https://doi.org/10.3354/dao048101

Gjessing, M. C., Thoen, E., Tengs, T., Skotheim, S. A., & Dale, O. B. (2017). Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater- and seawater-reared Atlantic salmon. Journal of Fish Diseases, 40, 1253-1265. https://doi.org/10.1111/jfd.12608

Gorgoglione, B., Bailey, C., Fast, M. D., Bass, D., Saraiva, M., Adamek, M., Noguera, P., Ciulli, S., Palíková, M., Aguirre-Gil, I., Bigarré, L., & Haenen, O. (2020). Co-infections and multiple stressors in fish. Bulletin of the EAFP, 40(1), 4-19.

Jung-Schroers, V., Adamek, M., Teitge, F., Hellman, J., Bergmann, S. M., Schutze, H., & Steinhagen, D. (2015). Another potential carp killer? Carp edema virus disease in Germany. BMC Veterinary Research, 11, 114. https://doi.org/10.1186/s12917-015-0424-7

Koutná, M., Veselý, T., Psikal, I., & Hůlová, J. (2003). Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Diseases of Aquatic Organisms, 55, 229-235. https://doi.org/10.3354/dao055229

Kubasova, T., Davidova-Gerzova, L., Merlot, E., Medvecky, M., Polansky, O., Gardan-Salmon, D., Quesnet, H., & Rychlik, I. (2017). Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS One, 12, e0170051. https://doi.org/10.1371/journal.pone.0170051

Lewisch, E., Gorgoglione, B., Way, K., & El-Matbouli, M. (2015). Carp edema virus/koi sleepy disease: An emerging disease in central-East Europe. Transboundary and Emerging Diseases, 62(1), 6-12. https://doi.org/10.1111/tbed.12293

Lom, J., & Dyková, I. (1992). Protozoan parasites of fishes. In Developments in aquaculture fisheries and science (Vol. 26, p. 315). Elsevier.

Matějíčková, K., Pojezdal, Ľ., Pokorová, D., Reschová, S., Piačková, V., Palíková, M., Veselý, T., & Papežíková, I. (2020). First cases of carp edema virus disease in the Czech aquaculture. Journal of Fish Diseases, 4, 971-978. https://doi.org/10.1111/jfd.13179

Matras, M., Borzym, E., Stone, D., Way, K., Stachnik, M., Maj-Paluch, J., Palusińska, M., & Reichert, M. (2017). Carp edema virus in polish aquaculture - Evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). Journal of Fish Diseases, 40, 319-325. https://doi.org/10.1111/jfd.12518

Pikula, J., Pojezdal, L. I., Papezikova, I., Minarova, H., Mikulikova, I., Bandouchova, H., Blahova, J., Bednarska, M., Mares, J., & Palikova, M. (2021). Carp edema virus infection is associated with severe metabolic disturbance in fish. Frontiers in Veterinary Science, 8, 679970. https://doi.org/10.3389/fvets.2021.679970

Pragyan, D., Bajpai, V., Suman, K., Mohanty, J., & Sahoo, P. K. (2019). A review of current understanding on carp edema virus (CEV): A threatful entity in disguise. International Journal of Fisheries and Aquatic Studies, 7(5), 87-93.

Sauerwald, C., Volmer, R., Adamek, M., Jung-Schroers, V., & Flamm, A. (2020). Mortality event associated with CEV and SVCV co-infection in common carp farm in Germany. Bulletin of the EAFP, 40(3), 123-128.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197

Way, K., Haenen, O., Stone, D., Adamek, M., Bergmann, S. M., Bigarré, L., Diserens, N., El-Matbouli, M., Gjessing, M., Jung-Schroers, V., Leguay, E., Matras, M., Olesen, N., Panzarin, V., Piačková, V., Toffan, A., Vendramin, N., Veselý, T., & Waltzek, T. (2017). Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Diseases of Aquatic Organisms, 126(2), 155-166. https://doi.org/10.3354/dao03164

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...