Stressing out-carp edema virus induces stress and modulates immune response in common carp
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38576605
PubMed Central
PMC10991768
DOI
10.3389/fimmu.2024.1350197
Knihovny.cz E-resources
- Keywords
- CEV, carp edema virus, common carp, fish poxviruses, immunomodulation, koi sleepy disease, stress,
- MeSH
- Sodium Chloride MeSH
- Edema MeSH
- Immunity MeSH
- Poxviridae Infections * MeSH
- Carps * MeSH
- Fish Diseases * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sodium Chloride MeSH
INTRODUCTION: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. METHODS: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). RESULTS: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. CONCLUSION: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
Doctoral School of Exact and Natural Sciences Jagiellonian University Krakow Poland
Research Institute for Farm Animal Biology Dummerstorf Germany
See more in PubMed
Foyle KL, Hess S, Powell MD, Herbert NA. What is gill health and what is its role in marine finfish aquaculture in the face of a changing climate? Front Mar Sci. (2020) 7:400. doi: 10.3389/fmars.2020.00400 DOI
Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. (2005) 85:97–177. doi: 10.1152/physrev.00050.2003 PubMed DOI
Zawisza M, Chadzinska M, Steinhagen D, Rakus K, Adamek M. Gill disorders in fish: Lessons from poxvirus infections. Rev Aquac. (2024) 16:234–53. doi: 10.1111/raq.12835 DOI
Machat R, Pojezdal L, Piackova V, Faldyna M. Carp edema virus and immune response in carp (Cyprinus carpio): Current knowledge. J Fish Dis. (2021) 44:371–8. doi: 10.1111/jfd.13335 PubMed DOI
Adamek M, OsChilewski A, Wohlsein P, Jung-Schroers V, Teitge F, Dawson A, et al. . Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet Res. (2017) 48:12. doi: 10.1186/s13567-017-0416-7 PubMed DOI PMC
Miyazaki T, Isshiki T, Katsuyuki H. Histopathological and electron microscopy studies on sleepy disease of koi Cyprinus carpio koi in Japan. Dis Aquat Organ. (2005) 65:197–207. doi: 10.3354/dao065197 PubMed DOI
Adamek M, Heling M, Bauer J, Teitge F, Bergmann SM, Kleingeld DW, et al. . It is everywhere—A survey on the presence of carp edema virus in carp populations in Germany. Transbound Emerg Dis. (2022) 69:2227–41. doi: 10.1111/tbed.14225 PubMed DOI
Zrnčić S, Oraić D, Zupičić IG, Pavlinec Ž, Brnić D, Rogić ŽA, et al. . Koi herpesvirus and carp edema virus threaten common carp aquaculture in Croatia. J Fish Dis. (2020) 43:673–85. doi: 10.1111/jfd.13163 PubMed DOI
Adamek M, Baska F, Vincze B, Steinhagen D. Carp edema virus from three genogroups is present in common carp in Hungary. J Fish Dis. (2018) 41:463–8. doi: 10.1111/jfd.12744 PubMed DOI
Tolo IE, Padhi SK, Hundt PJ, Bajer PG, Mor SK, Phelps NBD. Host range of carp edema virus (Cev) during a natural mortality event in a minnesota lake and update of cev associated mortality events in the USA. Viruses. (2021) 13:400. doi: 10.3390/v13030400 PubMed DOI PMC
Matras M, Borzym E, Stone D, Way K, Stachnik M, Maj-Paluch J, et al. . Carp edema virus in Polish aquaculture – evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). J Fish Dis. (2017) 40:319–25. doi: 10.1111/jfd.12518 PubMed DOI
Jung-Schroers V, Adamek M, Teitge F, Hellmann J, Bergmann SM, Schütze H, et al. . Another potential carp killer?: Carp Edema Virus disease in Germany. BMC Vet Res. (2015) 11:114. doi: 10.1186/s12917-015-0424-7 PubMed DOI PMC
Way K, Haenen O, Stone D, Adamek M, Bergmann SM, Bigarré L, et al. . Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio . Dis Aquat Organ. (2017) 126:155–66. doi: 10.3354/dao03164 PubMed DOI
Adamek M, Teitge F, Baumann I, Jung-Schroers V, El Rahman SA, Paley R, et al. . Koi sleepy disease as a pathophysiological and immunological consequence of a branchial infection of common carp with carp edema virus. Virulence. (2021) 12:1855–83. doi: 10.1080/21505594.2021.1948286 PubMed DOI PMC
Pikula J, Pojezdal L, Papezikova I, Minarova H, Mikulikova I, Bandouchova H, et al. . Carp edema virus infection is associated with severe metabolic disturbance in fish. Front Vet Sci. (2021) 8:679970. doi: 10.3389/fvets.2021.679970 PubMed DOI PMC
Lewisch E, Gorgoglione B, Way K, El-Matbouli M. Carp Edema Virus/Koi sleepy disease: An emerging disease in central-east Europe. Transbound Emerg Dis. (2015) 62:6–12. doi: 10.1111/tbed.12293 PubMed DOI
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev Comp Immunol. (2017) 66:2–23. doi: 10.1016/j.dci.2016.05.015 PubMed DOI
Wendelaar Bonga SE. The stress response in fish. Physiol Rev. (1997) 77:591–625. doi: 10.1152/physrev.1997.77.3.591 PubMed DOI
Greenwood AK, Butler PC, White RB, DeMarco U, Pearce D, Fernald RD. Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology. (2003) 144:4226–36. doi: 10.1210/en.2003-0566 PubMed DOI
Bury NR, Sturm A. Evolution of the corticosteroid receptor signalling pathway in fish. Gen Comp Endocrinol. (2007) 153:47–56. doi: 10.1016/j.ygcen.2007.03.009 PubMed DOI
McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocr Rev. (1999) 20:435–59. doi: 10.1210/edrv.20.4.0375 PubMed DOI
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: Molecular mechanisms for gene repression. Endocr Rev. (2003) 24:488–522. doi: 10.1210/er.2002-0006 PubMed DOI
Bury N, Sturm A, Le Rouzic P, Lethimonier C, Ducouret B, Guiguen Y, et al. . Evidence for two distinct functional glucocorticoid receptors in teleost fish. J Mol Endocrinol. (2003) 31:141–56. doi: 10.1677/jme.0.0310141 PubMed DOI
Stolte EH, Nabuurs SB, Bury NR, Sturm A, Flik G, Savelkoul HFJ, et al. . Stress and innate immunity in carp: Corticosteroid receptors and pro-inflammatory cytokines. Mol Immunol. (2008) 46:70–9. doi: 10.1016/j.molimm.2008.07.022 PubMed DOI
McCormick SD, Regish A, O’Dea MF, Shrimpton JM. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon. Gen Comp Endocrinol. (2008) 157:35–40. doi: 10.1016/j.ygcen.2008.03.024 PubMed DOI
Schreck CB, Tort L. The concept of stress in fish. In: Schreck CB, Tort L, Farrell AP, Brauner CJ, editors. Fish Physiology. Cambridge, Massachusetts, US: Academic Press; (2016). p. 1–34. doi: 10.1016/B978-0-12-802728-8.00001-1 DOI
Metz JR, Huising MO, Leon K, Verburg-van Kemenade BML, Flik G. Central and peripheral interleukin-1β and interleukin-1 receptor I expression and their role in the acute stress response of common carp, Cyprinus carpio L. J Endocrinol. (2006) 191:25–35. doi: 10.1677/joe.1.06640 PubMed DOI
Pijanowski L, Jurecka P, Irnazarow I, Kepka M, Szwejser E, Verburg-van Kemenade BML, et al. . Activity of the hypothalamus–pituitary–interrenal axis (HPI axis) and immune response in carp lines with different susceptibility to disease. Fish Physiol Biochem. (2015) 41:1261–78. doi: 10.1007/s10695-015-0084-3 PubMed DOI
Engelsma MY, Stet RJM, Schipper H, Verburg-van Kemenade BML. Regulation of interleukin 1 beta RNA expression in the common carp, Cyprinus carpio L. Dev Comp Immunol. (2001) 25:195–203. doi: 10.1016/S0145-305X(00)00059-8 PubMed DOI
Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action. Physiol Rev. (1999) 79:1–71. doi: 10.1152/physrev.1999.79.1.1 PubMed DOI
Adamek M, Matras M, Dawson A, Piackova V, Gela D, Kocour M, et al. . Type I interferon responses of common carp strains with different levels of resistance to koi herpesvirus disease during infection with CyHV-3 or SVCV. Fish Shellfish Immunol. (2019) 87:809–19. doi: 10.1016/j.fsi.2019.02.022 PubMed DOI
Klak K, Maciuszek M, Marcinkowska M, Verburg-van Kemenade BML, Chadzinska M. The importance of CXC-receptors CXCR1-2 and CXCR4 for adaptive regulation of the stress axis in teleost fish. Fish Shellfish Immunol. (2022) 127:647–58. doi: 10.1016/j.fsi.2022.06.070 PubMed DOI
Adamek M, Teitge F, Jung-Schroers V, Heling M, Gela D, Piackova V, et al. . Flavobacteria as secondary pathogens in carp suffering from koi sleepy disease. J Fish Dis. (2018) 41:1631–42. doi: 10.1111/jfd.12872 PubMed DOI
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, et al. . High-resolution, 3D imaging of the zebrafish gill-associated lymphoid tissue (GIALT) reveals a novel lymphoid structure, the amphibranchial lymphoid tissue. Front Immunol. (2021) 12:769901. doi: 10.3389/fimmu.2021.769901 PubMed DOI PMC
Embregts CWE, Rigaudeau D, Veselý T, Pokorová D, Lorenzen N, Petit J, et al. . Intramuscular DNA vaccination of juvenile carp against spring viremia of carp virus induces full protection and establishes a virus-specific B and T cell response. Front Immunol. (2017) 8:1340. doi: 10.3389/fimmu.2017.01340 PubMed DOI PMC
Maciuszek M, Klak K, Rydz L, Verburg-van Kemenade BML, Chadzinska M. Cortisol metabolism in carp macrophages: A role for macrophage-derived cortisol in M1/M2 polarization. Int J Mol Sci. (2020) 21:8954. doi: 10.3390/ijms21238954 PubMed DOI PMC
Forlenza M. Immune responses of carp: A molecular and cellular approach to infections. Wageningen University, Wageningen: (2009). p. 133.
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, et al. . Don’t let it get under your skin! – Vaccination protects the skin barrier of common carp from disruption caused by Cyprinid herpesvirus 3. Front Immunol. (2022) 13:787021. doi: 10.3389/fimmu.2022.787021 PubMed DOI PMC
Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. . Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. (2016) 44:147–53. doi: 10.1093/nar/gkw419 PubMed DOI PMC
Nylund A, Watanabe K, Nylund S, Karlsen M, Sæther PA, Arnesen CE, et al. . Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed Atlantic salmon (Salmo salar) in Norway. Arch Virol. (2008) 153:1299–309. doi: 10.1007/s00705-008-0117-7 PubMed DOI
Wada S, Kurata O, Hatai K, Ishii H, Kasuya K, Watanabe Y. Proliferative branchitis associated with pathognomonic, atypical gill epithelial cells in cultured ayu. Plecoglossus altivelis. Fish Pathol. (2008) 43:89–91. doi: 10.3147/jsfp.43.89 DOI
Gadan K, Marjara IS, Sundh H, Sundell K, Evensen Ø. Slow release cortisol implants result in impaired innate immune responses and higher infection prevalence following experimental challenge with infectious pancreatic necrosis virus in Atlantic salmon (Salmo salar) parr. Fish Shellfish Immunol. (2012) 32:637–44. doi: 10.1016/j.fsi.2012.01.004 PubMed DOI
Ellis T, Bagwell N, Pond M, Baynes S, Scott AP. Acute viral and bacterial infections elevate water cortisol concentrations in fish tanks. Aquaculture. (2007) 272:707–16. doi: 10.1016/j.aquaculture.2007.07.235 DOI
Thoen E, Tartor H, Amundsen M, Dale OB, Sveinsson K, Rønning HP, et al. . First record of experimentally induced salmon gill poxvirus disease (SGPVD) in Atlantic salmon (Salmo salar L.). Vet Res. (2020) 51:63. doi: 10.1186/s13567-020-00787-9 PubMed DOI PMC
Pickering AD, Duston J. Administration of cortisol to brown trout, Salmo trutta L., and its effects on the susceptibility to Saprolegnia infection and furunculosis. J Fish Biol. (1983) 23:163–75. doi: 10.1111/j.1095-8649.1983.tb02891.x DOI
Stolte EH, de Mazon AF, Leon-Koosterziel KM, Jesiak M, Bury NR, Sturm A, et al. . Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio . J Endocrinol. (2008) 198:403–17. doi: 10.1677/JOE-08-0100 PubMed DOI
Xu X, Li M, Wu C, Li D, Jiang Z, Liu C, et al. . The fish-specific protein kinase (PKZ) initiates innate immune responses via IRF3- and ISGF3-like mediated pathways. Front Immunol. (2019) 10:582. doi: 10.3389/fimmu.2019.00582 PubMed DOI PMC
Davies MV, Chang HW, Jacobs BL, Kaufman RJ. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J Virol. (1993) 67:1688–92. doi: 10.1128/jvi.67.3.1688-1692.1993 PubMed DOI PMC
Langland JO, Jacobs BL. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology. (2002) 299:133–41. doi: 10.1006/viro.2002.1479 PubMed DOI
Castro R, Piazzon MC, Noya M, Leiro JM, Lamas J. Isolation and molecular cloning of a fish myeloperoxidase. Mol Immunol. (2008) 45:428–37. doi: 10.1016/j.molimm.2007.05.028 PubMed DOI
Gjessing MC, Krasnov A, Timmerhaus G, Brun S, Afanasyev S, Dale OB, et al. . The Atlantic salmon gill transcriptome response in a natural outbreak of salmon gill poxvirus infection reveals new biomarkers of gill pathology and suppression of mucosal defense. Front Immunol. (2020) 11:2154. doi: 10.3389/fimmu.2020.02154 PubMed DOI PMC
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. Infect Genet Evol. (2014) 21:15–40. doi: 10.1016/j.meegid.2013.10.014 PubMed DOI PMC
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, et al. . T cell inactivation by poxviral B22 family proteins increases viral virulence. PloS Pathog. (2014) 10:e1004123. doi: 10.1371/journal.ppat.1004123 PubMed DOI PMC
Mekata T, Kawato Y, Ito T. Complete genome sequence of carp edema virus isolated from Koi carp. Microbiol Resour Announc. (2021) 10:e00239–21. doi: 10.1128/MRA.00239-21 PubMed DOI PMC
Gjessing MC, Yutin N, Tengs T, Senkevich T, Koonin E, Rønning HP, et al. . Salmon gill poxvirus, the deepest representative of the Chordopoxvirinae. J Virol. (2015) 89:9348–67. doi: 10.1128/jvi.01174-15 PubMed DOI PMC
Amundsen MM, Tartor H, Andersen K, Sveinsson K, Thoen E, Gjessing MC, et al. . Mucosal and systemic immune responses to salmon gill poxvirus infection in Atlantic salmon are modulated upon hydrocortisone injection. Front Immunol. (2021) 12:689302. doi: 10.3389/fimmu.2021.689302 PubMed DOI PMC
Harris J, Bird DJ. Modulation of the fish immune system by hormones. Vet Immunol Immunopathol. (2000) 77:163–76. doi: 10.1016/S0165-2427(00)00235-X PubMed DOI