Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

. 2017 ; 8 () : 1340. [epub] 20171024

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29114248

Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.

Zobrazit více v PubMed

Embregts CWE, Forlenza M. Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol (2016) 64:118–37.10.1016/j.dci.2016.03.024 PubMed DOI

Munang’andu HM, Mutoloki S, Evensen Ø. An overview of challenges limiting the design of protective mucosal vaccines for finfish. Front Immunol (2015) 6:52.10.3389/fimmu.2015.00542 PubMed DOI PMC

Mutoloki S, Munang’andu HM, Evensen O. Oral vaccination of fish- antigen preparations, uptake and immune induction. Front Immunol (2015) 6:519.10.3389/fimmu.2015.00519 PubMed DOI PMC

Parra D, Reyes-Lopez FE, Tort L. Mucosal immunity and B cells in teleosts: effect of vaccination and stress. Front Immunol (2015) 6:354.10.3389/fimmu.2015.00354 PubMed DOI PMC

Tonheim TC, Bøgwald J, Dalmo RA. What happens to the DNA vaccine in fish? A review of current knowledge. Fish Shellfish Immunol (2008) 25:1–18.10.1016/j.fsi.2008.03.007 PubMed DOI

EMA. First DNA Vaccine in the EU Recommended for Use in Salmon. (2016). Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2016/04/news_detail_002516.jsp&mid=WC0b01ac058004d5c1

Lorenzen N, Lorenzen E, Einer-Jensen K, Heppell J, Wu T, Davis H. Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish Shellfish Immunol (1998) 8:261–70.10.1006/fsim.1997.0134 DOI

Byon JY, Ohira T, Hirono I, Aoki T. Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine (2006) 24:921–30.10.1016/j.vaccine.2005.08.087 PubMed DOI

Pereiro P, Martinez-Lopez A, Falco A, Dios S, Figueras A, Coll JM, et al. Protection and antibody response induced by intramuscular DNA vaccine encoding for viral haemorrhagic septicaemia virus (VHSV) G glycoprotein in turbot (Scophthalmus maximus). Fish Shellfish Immunol (2012) 32:1088–94.10.1016/j.fsi.2012.03.004 PubMed DOI

Hart LM, Lorenzen N, Lapatra SE, Grady CA, Roon SE, O’Reilly J, et al. Efficacy of a glycoprotein DNA vaccine against viral haemorrhagic septicaemia (VHS) in pacific herring, Clupea pallasii valenciennes. J Fish Dis (2012) 35:775–9.10.1111/j.1365-2761.2012.01364.x PubMed DOI

Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis Aquat Organ (2005) 64:13–22.10.3354/dao064013 PubMed DOI

Kurath G, Garver KA, Corbeil S, Elliott DG, Anderson ED, LaPatra SE. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine (2006) 24:345–54.10.1016/j.vaccine.2005.07.068 PubMed DOI

Takano T, Iwahori A, Hirono I, Aoki T. Development of a DNA vaccine against hirame rhabdovirus and analysis of the expression of immune-related genes after vaccination. Fish Shellfish Immunol (2004) 17:367–74.10.1016/j.fsi.2004.04.012 PubMed DOI

Boudinot P, Blanco M, de Kinkelin P, Benmansour A. Combined DNA immunization with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity and nonspecific response in rainbow trout. Virology (1998) 249:297–306.10.1006/viro.1998.9322 PubMed DOI

FAO. Cultured Aquatic Species Information Program. Cyprinus carpio. (2017). Available from: http://www.fao.org/fishery/culturedspecies/Cyprinus_carpio/en#tcNA00D6

Ahne W, Bjorklund HV, Essbauer S, Fijan N, Kurath G, Winton JR. Spring viremia of carp (SVC). Dis Aquat Organ (2002) 52:261–72.10.3354/dao052261 PubMed DOI

Dikkeboom AL, Radi C, Toohey-Kurth K, Marcquenski S, Engel M, Goodwin AE, et al. First report of spring viremia of carp virus (SVCV) in wild common carp in North America. J Aquat Anim Health (2004) 16:169–78.10.1577/H03-064.1 DOI

Garver KA, Dwilow AG, Richard J, Booth TF, Beniac DR, Souter BW. First detection and confirmation of spring viraemia of carp virus in common carp, Cyprinus carpio L., from Hamilton Harbour, Lake Ontario, Canada. J Fish Dis (2007) 30:665–71.10.1111/j.1365-2761.2007.00851.x PubMed DOI

Liu H, Gao L, Shi X, Gu T, Jiang Y, Chen H. Isolation of spring viraemia of carp virus (SVCV) from cultured koi (Cyprinus carpio koi) and common carp (C. carpio carpio) in P.R. China. Bull Eur Assoc Fish Pathol (2004) 24:194–202.

Dauber M, Schütze H, Fichtner D. Determination of the complete genomic sequence and analysis of the gene products of the virus of spring viremia of carp, a fish rhabdovirus. Bull Eur Assoc Fish Pathol (2001) 21:170–7.10.1016/S0168-1702(01)00441-5 PubMed DOI

Teng Y, Liu H, Lv JQ, Fan WH, Zhang QY, Qin QW. Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. Arch Virol (2007) 152:1457–65.10.1007/s00705-007-0971-8 PubMed DOI

Kanellos T, Sylvester ID, D’Mello F, Howard CR, Mackie A, Dixon PF, et al. DNA vaccination can protect Cyprinus carpio against spring viraemia of carp virus. Vaccine (2006) 24:4927–33.10.1016/j.vaccine.2006.03.062 PubMed DOI

Emmenegger EJ, Kurath G. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus. Vaccine (2008) 26:6415–21.10.1016/j.vaccine.2008.08.071 PubMed DOI

Lorenzen N, LaPatra SE. DNA vaccines for aquacultured fish. Rev Sci Tech (2005) 24:201–13.10.3354/dao056031 PubMed DOI

Cui L-C, Guan X-T, Liu Z-M, Tian C-Y, Xu Y-G. Recombinant Lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine (2015) 33(27):3092–9.10.1016/j.vaccine.2015.05.002 PubMed DOI

Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol (2004) 17:447–62.10.1016/j.fsi.2004.04.017 PubMed DOI

Acosta F, Petrie A, Lockhart K, Lorenzen N, Ellis AE. Kinetics of Mx expression in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) parr in response to VHS-DNA vaccination. Fish Shellfish Immunol (2005) 18:81–9.10.1016/j.fsi.2004.06.005 PubMed DOI

Yasuike M, Kondo H, Hirono I, Aoki T. Difference in Japanese flounder, Paralichthys olivaceus gene expression profile following hirame rhabdovirus (HIRRV) G and N protein DNA vaccination. Fish Shellfish Immunol (2007) 23:531–41.10.1016/j.fsi.2006.12.006 PubMed DOI

Kim CH, Johnson MC, Drennan JD, Simon BE, Thomann E, Leong JA. DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish. J Virol (2000) 74:7048–54.10.1128/JVI.74.15.7048-7054.2000 PubMed DOI PMC

Bela-ong DB, Schyth BD, Zou J, Secombes CJ, Lorenzen N. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus. Vaccine (2015) 33:3215–22.10.1016/j.vaccine.2015.04.092 PubMed DOI

Boudinot P, Bernard D, Boubekeur S, Thoulouze MI, Bremont M, Benmansour A. The glycoprotein of a fish rhabdovirus profiles the virus-specific T-cell repertoire in rainbow trout. J Gen Virol (2004) 85:3099–108.10.1099/vir.0.80135-0 PubMed DOI

Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K, et al. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. Dev Comp Immunol (2008) 32:239–52.10.1016/j.dci.2007.05.010 PubMed DOI

Irnazarow I. Genetic variability of polish and Hungarian carp lines. Aquaculture (1995) 129:215.10.1016/0044-8486(95)91961-T DOI

Betts AM, Stone DM, Way K, Torhy C, Chilmonczyk S, Benmansour A, et al. Emerging vesiculo-type virus infections of freshwater fishes in Europe. Dis Aquat Organ (2003) 57:201–12.10.3354/dao057201 PubMed DOI

Fijan N, Petrinec Z, Sulimanovic D, Zwillenberg LO. Isolation of the viral causative agent from the acute form of infectious dropsy of carp. Vet Arh (1971) 41:125–38.

Koutná M, Veselý T, Pšikal I, Hůlová J. Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Dis Aquat Organ (2003) 55:229–35.10.3354/dao055229 PubMed DOI

Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol (1938) 27:493–7.10.1093/oxfordjournals.aje.a118408 DOI

Hoffmann B, Schü H, Mettenleiter TC. Determination of the complete genomic sequence and analysis of the gene products of the virus of spring viremia of carp, a fish rhabdovirus. Virus Res (2002) 84:89–100.10.1016/S0168-1702(01)00441-5 PubMed DOI

Dauber M, Schütze H, Fichtner D. Development and characterization of monoclonal antibodies raised against a viral haemorrhagic septicaemia virus (VHSV) isolate which failed to be identified by a commercial kit. Bull Eur Assoc Fish Pathol (2001) 21:170–7.

Faisal M, Ahne W. Spring viraemia of carp virus (SVCV): comparison of immunoperoxidase, fluorescent antibody and cell culture isolation techniques for detection of antigen. J Fish Dis (1984) 7:57–64.10.1111/j.1365-2761.1984.tb00906.x DOI

Forlenza M, Kaiser T, Savelkoul HFJ, Wiegertjes GF. The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. Methods Mol Biol (2012) 820:7–23.10.1007/978-1-61779-439-1 PubMed DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res (2001) 29:e45.10.1093/nar/29.9.e45 PubMed DOI PMC

Forlenza M, Scharsack JP, Kachamakova NM, Taverne-Thiele AJ, Rombout JHWM, Wiegertjes GF. Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. Mol Immunol (2008) 45:3178–89.10.1016/j.molimm.2008.02.025 PubMed DOI

Nakayasu C, Omori M, Hasegawa S, Kurata O, Okamoto N. Production of a monoclonal antibody for carp (Cyprinus carpio L.) phagocytic cells and separation of the cells. Fish Shellfish Immunol (1998) 8:91–100.10.1006/fsim.1997.0125 DOI

Forlenza M, Walker PD, de Vries BJ, Wendelaar Bonga SE, Wiegertjes GF. Transcriptional analysis of the common carp (Cyprinus carpio L.) immune response to the fish louse Argulus japonicus Thiele (Crustacea: Branchiura). Fish Shellfish Immunol (2008) 25:76–83.10.1016/j.fsi.2007.12.013 PubMed DOI

Koumans-van Diepen JE, van de Lisdonk MHM, Taverne-Thiele AJ, Verburg-van Kemenade BML, Rombout JHWM. Characterisation of immunoglobulin-binding leucocytes in carp (Cyprinus carpio L.). Dev Comp Immunol (1994) 18:45–56.10.1016/0145-305X(94)90251-8 PubMed DOI

Piazzon MC, Savelkoul HSJ, Pietretti D, Wiegertjes GF, Forlenza M. Carp Il10 has anti-inflammatory activities on phagocytes, promotes proliferation of memory T cells, and regulates B cell differentiation and antibody secretion. J Immunol (2015) 194:187–99.10.4049/jimmunol.1402093 PubMed DOI

Arts JAJ, Tijhaar EJ, Chadzinska M, Savelkoul HFJ, Verburg-van Kemenade BML. Functional analysis of carp interferon-γ: evolutionary conservation of classical phagocyte activation. Fish Shellfish Immunol (2010) 29:793–802.10.1016/j.fsi.2010.07.010 PubMed DOI

Piazzon MC, Wentzel AS, Wiegertjes GF, Forlenza M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. Dev Comp Immunol (2017) 67:350–60.10.1016/j.dci.2016.08.016 PubMed DOI

Piazzon MC, Wentzel AS, Tijhaar EJ, Rakus KŁ, Vanderplasschen A, Wiegertjes GF, et al. Cyprinid herpesvirus 3 Il10 inhibits inflammatory activities of carp macrophages and promotes proliferation of Igm+ B cells and memory T cells in a manner similar to carp Il10. J Immunol (2015) 195(8):3694–704.10.4049/jimmunol.1500926 PubMed DOI

Shibasaki Y, Hatanaka C, Matsuura Y, Miyazawa R, Yabu T, Moritomo T, et al. Effects of IFNγ administration on allograft rejection in ginbuna crucian carp. Dev Comp Immunol (2016) 62:108–15.10.1016/j.dci.2016.04.021 PubMed DOI

Secombes CJ, van Groningen JJ, Egberts E. Separation of lymphocyte subpopulations in carp Cyprinus carpio L. by monoclonal antibodies: immunohistochemical studies. Immunology (1983) 48:165–75. PubMed PMC

Ahne W. Uptake and multiplication of spring viraemia of carp virus in carp, Cyprinus carpio L. J Fish Dis (1978) 1:265–8.10.1111/j.1365-2761.1978.tb00029.x DOI

Huising MO, Stet RJM, Kruiswijk CP, Savelkoul HFJ, Lidy Verburg-van Kemenade BM. Molecular evolution of CXC chemokines: extant CXC chemokines originate from the CNS. Trends Immunol (2003) 24:306–12.10.1016/S1471-4906(03)00120-0 PubMed DOI

Huising MO, Stolte E, Flik G, Savelkoul HFJ, Verburg-van Kemenade BML. CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.). Dev Comp Immunol (2003) 27:875–88.10.1016/S0145-305X(03)00082-X PubMed DOI

Stolte EH, Savelkoul HFJ, Wiegertjes G, Flik G, Lidy Verburg-van Kemenade BM. Differential expression of two interferon-γ genes in common carp (Cyprinus carpio L.). Dev Comp Immunol (2008) 32:1467–81.10.1016/j.dci.2008.06.012 PubMed DOI

Moore JD. Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. Fish Shellfish Immunol (1998) 8:393–407.10.1006/fsim.1998.0143 DOI

Avtalion RR. Temperature effect on antibody production and immunological memory, in carp (Cyprinus carpio) immunized against bovine serum albumin (BSA). Immunology (1969) 17:927–31. PubMed PMC

Avtalion RR, Wojdani A, Malik Z, Shahrabani R, Duczyminer M. Influence of environmental temperature on the immune response in fish. Current Topics in Microbiology and Immunology/Ergebnisse Der Mikrobiologie Und Immunitätsforschung. Berlin, Heidelberg: Springer; (1973). p. 1–35. PubMed

Le Morvan C, Troutaud D, Deschaux P. Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol (1998) 201:165–8. PubMed

Rijkers GT, Frederix-Wolters EM, van Muiswinkel WB. The immune system of cyprinid fish. Kinetics and temperature dependence of antibody-producing cells in carp (Cyprinus carpio). Immunology (1980) 41:91–7. PubMed PMC

Ahne W. The influence of environmental temperature and infection route on the immune response of carp (Cyprinus carpio) to spring viremia of carp virus (SVCV). Vet Immunol Immunopathol (1986) 12:383–6.10.1016/0165-2427(86)90144-3 PubMed DOI

Ahne W. Rhabdovirus carpio-infektion beim karpfen (Cyprinus carpio): untersuchungen über reaktionen des wirtsorganismus. Fortschritte der Veterinärmedizin (1980) 30:180–3.

Lorenzen E, Einer-Jensen K, Rasmussen JS, Kjaer TE, Collet B, Secombes CJ, et al. The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature. Vaccine (2009) 27:3870–80.10.1016/j.vaccine.2009.04.012 PubMed DOI

Pokorova D, Reschova S, Vesely T. Kinetics of anti-svcv antibodies in the serum of the common carp (Cyprinus carpio l.) post experimental infection, in: Fish and Shellfish Immunology. Fish Shellfish Immunol (2013) 34:1730.10.1016/J.FSI.2013.03.287 DOI

Meier W, Schmitt M, Wahli T. Viral hemorrhagic septicemia (VHS) of nonsalmonids. Annu Rev Fish Dis (1994) 4:359–73.10.1016/0959-8030(94)90035-3 DOI

Bergmann SM, Fichtner D, Skall HF, Schlotfeldt HJ, Olesen NJ. Age- and weight-dependent susceptibility of rainbow trout Oncorhynchus mykiss to isolates of infectious haematopoietic necrosis virus (IHNV) of varying virulence. Dis Aquat Organ (2003) 55:205–10.10.3354/dao055205 PubMed DOI

Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by toll-like receptors: distinct responses in newborns and the elderly. Immunity (2012) 37:771–83.10.1016/j.immuni.2012.10.014 PubMed DOI PMC

Huttenhuis HBT, Taverne-Thiele AJ, Grou CPO, Bergsma J, Saeij JPJ, Nakayasu C, et al. Ontogeny of the common carp (Cyprinus carpio L.) innate immune system. Dev Comp Immunol (2006) 30:557–74.10.1016/j.dci.2005.08.001 PubMed DOI

Corbeil S, LaPatra SE, Anderson ED, Kurath G. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine (2000) 18:2817–24.10.1016/S0264-410X(00)00078-5 PubMed DOI

LaPatra SE, Corbeil S, Jones GR, Shewmaker WD, Lorenzen N, Anderson ED, et al. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination. Vaccine (2001) 19:4011–9.10.1016/S0264-410X(01)00113-X PubMed DOI

Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev Comp Immunol (2002) 26:173–9.10.1016/S0145-305X(01)00059-3 PubMed DOI

Lorenzen E, Lorenzen N, Einer-Jensen K, Brudeseth B, Evensen Ø. Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry. Fish Shellfish Immunol (2005) 19:27–41.10.1016/j.fsi.2004.10.009 PubMed DOI

van der Aa LM, Chadzinska M, Golbach LA, Ribeiro CMS, Lidy Verburg-van Kemenade BM. Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines. Dev Comp Immunol (2012) 36:741–50.10.1016/j.dci.2011.11.011 PubMed DOI

Abós B, Wang T, Castro R, Granja AG, Leal E, Havixbeck J, et al. Distinct differentiation programs triggered by IL-6 and LPS in teleost IgM(+) B cells in the absence of germinal centers. Sci Rep (2016) 6:30004.10.1038/srep30004 PubMed DOI PMC

Cuesta A, Tafalla C. Transcription of immune genes upon challenge with viral hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout (Oncorhynchus mykiss). Vaccine (2009) 27:280–9.10.1016/j.vaccine.2008.10.029 PubMed DOI

McLauchlan PE, Collet B, Ingerslev E, Secombes CJ, Lorenzen N, Ellis AE. DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection – early protection correlates with Mx expression. Fish Shellfish Immunol (2003) 15:39–50.10.1016/S1050-4648(02)00137-7 PubMed DOI

Castro R, Martínez-Alonso S, Fischer U, Haro NÁ, Soto-Lampe V, Wang T, et al. DNA vaccination against a fish rhabdovirus promotes an early chemokine-related recruitment of B cells to the muscle. Vaccine (2014) 32:1160–8.10.1016/j.vaccine.2013.11.062 PubMed DOI

Dixon P. Immunization with viral antigens: viral diseases of carp and catfish. Dev Biol Stand (1997) 90:221–32. PubMed

Forlenza M, de Carvalho Dias JDA, Veselý T, Pokorová D, Savelkoul HFJ, Wiegertjes GF. Transcription of signal-3 cytokines, IL-12 and IFN alpha beta, coincides with the timing of CD8 alpha beta up-regulation during viral infection of common carp (Cyprinus carpio L). Mol Immunol (2008) 45:1531–47.10.1016/j.molimm.2007.10.010 PubMed DOI

Piazzon MC, Lutfalla G, Forlenza M. IL10, a tale of an evolutionarily conserved cytokine across vertebrates. Crit Rev Immunol (2016) 36:99–129.10.1615/CritRevImmunol.2016017480 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...