Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34564605
PubMed Central
PMC8473110
DOI
10.3390/toxins13090601
PII: toxins13090601
Knihovny.cz E-zdroje
- Klíčová slova
- conjugates, cyanobacteria, immune system, microcystins, spring viraemia of carp,
- MeSH
- chemické látky znečišťující vodu toxicita MeSH
- kapři mikrobiologie MeSH
- Microcystis chemie MeSH
- mikrocystiny toxicita MeSH
- nemoci ryb chemicky indukované patofyziologie MeSH
- roční období MeSH
- stupeň závažnosti nemoci * MeSH
- testy toxicity MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- mikrocystiny MeSH
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.
Zobrazit více v PubMed
OIE . Manual of Diagnostic Tests for Aquatic Animals. OIE; Paris, France: 2016. Aquatic Animals Commission Spring Viraenia of Carps.
Ho J.C., Michalak A.M., Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature. 2019;574:667–670. doi: 10.1038/s41586-019-1648-7. PubMed DOI
US EPA Harmful algal Blooms. [(accessed on 19 April 2020)]; Available online: http://www2.epa.gov/nutrientpollution/harmful-algal-blooms.
Stewart I., Seawright A.A., Shaw G.R. Cyanobacterial poisoning in livestock, wild mammals and birds—An overview. Adv. Exp. Med. Biol. 2008;619:613–637. PubMed
Hilborn E., Beasley V. One Health and Cyanobacteria in Freshwater Systems: Animal Illnesses and Deaths Are Sentinel Events for Human Health Risks. Toxins. 2015;7:1374–1395. doi: 10.3390/toxins7041374. PubMed DOI PMC
Adamovsky O., Moosova Z., Pekarova M., Basu A., Babica P., Svihalkova Sindlerova L., Kubala L., Blaha L. Immunomodulatory Potency of Microcystin, an Important Water-Polluting Cyanobacterial Toxin. Environ. Sci. Technol. 2015;49:12457–12464. doi: 10.1021/acs.est.5b02049. PubMed DOI
Moosova Z., Hrouzek P., Kapuscik A., Blaha L., Adamovsky O. Immunomodulatory effects of selected cyanobacterial peptides in vitro. Toxicon. 2018;149:20–25. doi: 10.1016/j.toxicon.2018.04.031. PubMed DOI
Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI
Palikova M., Ondrackova P., Mares J., Adamovsky O., Pikula J., Kohoutek J., Navratil S., Blaha L., Kopp R. In vivo effects of microcystins and complex cyanobacterial biomass on rats (Rattus norvegicus var. alba): Changes in immunological and haematological parameters. Toxicon. 2013;73:1–8. doi: 10.1016/j.toxicon.2013.06.016. PubMed DOI
Palikova M., Navratil S., Papezikova I., Ambroz P., Vesely T., Pokorova D., Mares J., Adamovsky O., Navratil L., Kopp R. Combined exposure of carps (Cyprinus carpio L.) to cyanobacterial biomass and white spot disease. Neuro. Endocrinol. Lett. 2012;33((Suppl. 3)):77–83. PubMed
Clarke J.D., Dzierlenga A., Arman T., Toth E., Li H., Lynch K.D., Tian D.-D., Goedken M., Paine M.F., Cherrington N. Nonalcoholic fatty liver disease alters microcystin-LR toxicokinetics and acute toxicity. Toxicon. 2019;162:1–8. doi: 10.1016/j.toxicon.2019.03.002. PubMed DOI PMC
Lad A., Su R., Breidenbach J., Stemmer P., Carruthers N., Sanchez N., Khalaf F., Zhang S., Kleinhenz A., Dube P., et al. Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins. 2019;11:486. doi: 10.3390/toxins11090486. PubMed DOI PMC
Su R.C., Blomquist T.M., Kleinhenz A.L., Khalaf F.K., Dube P., Lad A., Breidenbach J.D., Mohammed C.J., Zhang S., Baum C.E., et al. Exposure to the harmful algal bloom (HAB) toxin microcystin-lr (MC-LR) prolongs and increases severity of dextran sulfate sodium (DSS)-induced colitis. Toxins. 2019;11:317. doi: 10.3390/toxins11060371. PubMed DOI PMC
Sarkar S., Kimono D., Albadrani M., Seth R.K., Busbee P., Alghetaa H., Porter D.E., Scott G.I., Brooks B., Nagarkatti M., et al. Environmental microcystin targets the microbiome and increases the risk of intestinal inflammatory pathology via NOX2 in underlying murine model of Nonalcoholic Fatty Liver Disease. Sci. Rep. 2019;9:8742. doi: 10.1038/s41598-019-45009-1. PubMed DOI PMC
Moosová Z., Šindlerová L., Ambrůzová B., Ambrožová G., Vašíček O., Velki M., Babica P., Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins. 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC
Dar H.Y., Lone Y., Koiri R.K., Mishra P.K., Srivastava R.K. Microcystin-leucine arginine (MC-LR) induces bone loss and impairs bone micro-architecture by modulating host immunity in mice: Implications for bone health. Environ. Pollut. 2018;238:792–802. doi: 10.1016/j.envpol.2018.03.059. PubMed DOI
Rymuszka A., Sieroslawska A., Bownik A., Skowronski T., Sierosławska A., Bownik A., Skowroński T. Microcystin-Lr Modulates Selected Immune Parameters and Induces Necrosis/Apoptosis of Carp Leucocytes. Environ. Toxicol. Chem. 2010;29:569–574. doi: 10.1002/etc.87. PubMed DOI
Sieroslawska A., Rymuszka A., Bownik A., Skowroiiski T. The influence of microcystin-LR on fish phagocytic cells. Hum. Exp. Toxicol. 2007;26:603–607. doi: 10.1177/09603271060080075. PubMed DOI
Sandoval H., Kodali S., Wang J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion. 2018;41:58–65. doi: 10.1016/j.mito.2017.11.005. PubMed DOI PMC
Caro-Maldonado A., Wang R., Nichols A.G., Kuraoka M., Milasta S., Sun L.D., Gavin A.L., Abel E.D., Kelsoe G., Green D.R., et al. Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells. J. Immunol. 2014;192:3626–3636. doi: 10.4049/jimmunol.1302062. PubMed DOI PMC
Sharma U., Pal D., Prasad R. Alkaline Phosphatase: An Overview. Indian J. Clin. Biochem. 2014;29:269–278. doi: 10.1007/s12291-013-0408-y. PubMed DOI PMC
Skocovska B., Hilscherova K., Babica P., Adamovsky O., Bandouchova H., Horakova J., Knotkova Z., Marsalek B., Paskova V., Pikula J. Effects of cyanobacterial biomass on the Japanese quail. Toxicon. 2007;49:793–803. doi: 10.1016/j.toxicon.2006.11.032. PubMed DOI
Pikula J., Bandouchova H., Hilscherova K., Paskova V., Sedlackova J., Adamovsky O., Knotkova Z., Lany P., Machat J., Marsalek B., et al. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. Sci. Total Environ. 2010;408:4984–4992. doi: 10.1016/j.scitotenv.2010.07.050. PubMed DOI
Rabergh C.M.I., Bylund G., Eriksson J.E. Histopathological Effects of Microcystin-Lr, a Cyclic Peptide Toxin from the Cyanobacterium (Blue-Green-Alga) Microcystis-Aeruginosa, on Common Carp (Cyprinus carpio L) Aquat. Toxicol. 1991;20:131–145. doi: 10.1016/0166-445X(91)90012-X. DOI
Adamovsky O., Palikova M., Ondrackova P., Zikova A., Kopp R., Mares J., Pikula J., Paskerova H., Kohoutek J., Blaha L., et al. Biochemical and histopathological responses of Wistar rats to oral intake of microcystins and cyanobacterial biomass. Neuro Endocrinol. Lett. 2013;34:11–20. PubMed
Nemes K., Åberg F., Gylling H., Isoniemi H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J. Hepatol. 2016;8:924. doi: 10.4254/wjh.v8.i22.924. PubMed DOI PMC
Ahne W., Bjorklund H.V., Essbauer S., Fijan N., Kurath G., Winton J.R. Spring viremia of carp (SVC) Dis. Aquat. Organ. 2002;52:261–272. doi: 10.3354/dao052261. PubMed DOI
Butler N., Carlisle J.C., Linville R., Washburn B. Micorcystins: A Brief Overview of their Toxicity and Effects, with Special Reference to fish, Wildlife and Livestock. Calif. Environ. Prot. Agency. 2009;2009:5.
Adamovský O., Kopp R., Hilscherová K., Babica P., Palíková M., Pašková V., Navrátil S., Maršálek B., Bláha L. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environ. Toxicol. Chem. 2007;26:2687. doi: 10.1897/07-213.1. PubMed DOI
Steiner K., Zimmermann L., Hagenbuch B., Dietrich D. Zebrafish Oatp-mediated transport of microcystin congeners. Arch. Toxicol. 2016;90:1129–1139. doi: 10.1007/s00204-015-1544-3. PubMed DOI PMC
Fischer A., Hoeger S.J., Stemmer K., Feurstein D.J., Knobeloch D., Nussler A., Dietrich D.R. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: A comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol. Appl. Pharmacol. 2010;245:9–20. doi: 10.1016/j.taap.2010.02.006. PubMed DOI
Pflugmacher S., Wiegand C., Oberemm A., Beattie K.A., Krause E., Codd G.A., Steinberg C.E.W. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochim. Biophys. Acta-Gen. Subj. 1998;1425:527–533. doi: 10.1016/S0304-4165(98)00107-X. PubMed DOI
He J., Chen J., Xie P., Zhang D., Li G., Wu L., Zhang W., Guo X., Li S. Quantitatively evaluating detoxification of the hepatotoxic microcystins through the glutathione and cysteine pathway in the cyanobacteria-eating bighead carp. Aquat. Toxicol. 2012;116–117:61–68. doi: 10.1016/j.aquatox.2012.03.004. PubMed DOI
Li W., Chen J., Xie P., He J., Guo X., Tuo X., Zhang W., Wu L. Rapid conversion and reversible conjugation of glutathione detoxification of microcystins in bighead carp (Aristichthys nobilis) Aquat. Toxicol. 2014;147:18–25. doi: 10.1016/j.aquatox.2013.12.001. PubMed DOI
Amado L.L., Monserrat J.M. Oxidative stress generation by microcystins in aquatic animals: Why and how. Environ. Int. 2010;36:226–235. doi: 10.1016/j.envint.2009.10.010. PubMed DOI
Miki H., Funato Y. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J. Biochem. 2012;151:255–261. doi: 10.1093/jb/mvs006. PubMed DOI
Vermeij W.P., Backendorf C. Epidermal Cells. Springer; New York, NY, USA: 2013. Reactive Oxygen Species (ROS) Protection via Cysteine Oxidation in the Epidermal Cornified Cell Envelope; pp. 157–169. PubMed
Yang Y., Bazhin A.V., Werner J., Karakhanova S. Reactive Oxygen Species in the Immune System. Int. Rev. Immunol. 2013;32:249–270. doi: 10.3109/08830185.2012.755176. PubMed DOI
Bláha L., Bláhová L., Kohoutek J., Adamovský O., Babica P., Marsálek B. Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. J. Serbian Chem. Soc. 2010;75:1303–1312. doi: 10.2298/JSC100113106B. DOI
Embregts C.W.E., Rigaudeau D., Veselý T., Pokorová D., Lorenzen N., Petit J., Houel A., Dauber M., Schütze H., Boudinot P., et al. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Front. Immunol. 2017;8:1340. doi: 10.3389/fimmu.2017.01340. PubMed DOI PMC
Forlenza M., de Carvalho Dias J.D., Veselý T., Pokorová D., Savelkoul H.F., Wiegertjes G.F. Transcription of signal-3 cytokines, IL-12 and IFNαβ, coincides with the timing of CD8αβ up-regulation during viral infection of common carp (Cyprinus carpio L.) Mol. Immunol. 2008;45:1531–1547. doi: 10.1016/j.molimm.2007.10.010. PubMed DOI
Koutná M., Vesely T., Psikal I., Hulová J. Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Dis. Aquat. Organ. 2003;55:229–235. doi: 10.3354/dao055229. PubMed DOI
Svobodová Z., Pravda D., Modrá H. Methods of haematological examination of fish. Edice Metod. 2012;122:38. (In Czech)
IFCC Expert Panel on Enzymes Provisional Recommendations on IFCC Methods for the Measurement of Catalytic Con-centrations of Enzymes. CIin. Chim. Acta. 1976;70:F19–F42. doi: 10.1016/0009-8981(76)90437-X. PubMed DOI
Hajzer S., Jagelkova J. Proposition of standard method for catalytic concentration of lactate dehydrogenase in plasma diagnosis. Biochem. Clin. Bohemoslov. 1988;17:371–379.
Tiez N. Progress in the development of a recommended method for alkaline phosphatase activity measurements. Clin. Chem. 1980;26:1023.
Doumas B.T., Bayse D.D., Carter R.J., Peters T., Schaffer R. A candidate reference method for determination of total protein in serum. I. Development and validation. Clin. Chem. 1981;27:1642–1650. doi: 10.1093/clinchem/27.10.1642. PubMed DOI
Doumas B.T., Ard Watson W., Biggs H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta. 1971;31:87–96. doi: 10.1016/0009-8981(71)90365-2. PubMed DOI
Barham D., Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 1972;97:142. doi: 10.1039/an9729700142. PubMed DOI
Michaylova V., Ilkova P. Photometric determination of micro amounts of calcium with arsenazo III. Anal. Chim. Acta. 1971;53:194–198. doi: 10.1016/S0003-2670(01)80088-X. DOI
Kratochvila J., Garcic A. Assignment of organic phosphorus in biological matter. Biochem. Clin. Bohemoslov. 1977;6:65.
Higgins T. Novel chromogen for serum iron determinations. Clin. Chem. 1981;27:1619–1620. doi: 10.1093/clinchem/27.9.1619a. PubMed DOI
Roch-Ramel F. An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens. Anal. Biochem. 1967;21:372–381. doi: 10.1016/0003-2697(67)90312-0. PubMed DOI
Roschlau P., Bernt E., Gruber W. Enzymatic determination of total cholesterol in serum. J. Clin. Chem. Clin. Biochem. 1974;12:403. PubMed
Jaffe M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Z Physiol.Chem. 1886;10:391–400.
Kubala L., Lojek A., Číž M., Vondráček J., Dušková M., Slavíková H. Determination of phagocyte activity in whole blood of carp (Cyprinus carpio) by luminol-enhanced chemiluminescence. Vet. Med. (Praha) 1996;41:323–327. PubMed
Buchtíková S., Šimková A., Rohlenová K., Flajšhans M., Lojek A., Lilius E.-M.M., Hyršl P. The seasonal changes in innate immunity of the common carp (Cyprinus carpio) Aquaculture. 2011;318:169–175. doi: 10.1016/j.aquaculture.2011.05.013. DOI
Kohoutek J., Procházková T., Adamovský O., Palíková M., Hilscherová K. Stable-isotope dilution LC-MS/MS method for quantitative determination of microcystin conjugates with cysteine and glutathione in biotic matrices. Anal. Bioanal. Chem. 2019;411:5267–5275. doi: 10.1007/s00216-019-01904-0. PubMed DOI
Kohoutek J., Adamovský O., Oravec M., Šimek Z., Palíková M., Kopp R., Bláha L. LC-MS analyses of microcystins in fish tissues overestimate toxin levels—Critical comparison with LC-MS/MS. Anal. Bioanal. Chem. 2010;398:1231–1237. doi: 10.1007/s00216-010-3860-z. PubMed DOI
Vesely T., Reschova S., Pokorova D., Hulova J., Nevorankova Z. Production of monoclonal antibodies against immunoglobulin heavy chain in common carp (Cyprinus carpio L.) Vet. Med. (Praha) 2006;51:296. doi: 10.17221/5549-VETMED. DOI
Boorsma D.M., Streefkerk J.G. Periodate or glutaraldyehyde for preparing peroxidase conjugates? J. Immunol. Methods. 1979;30:245–255. doi: 10.1016/0022-1759(79)90098-X. PubMed DOI