Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response

. 2019 Apr 11 ; 11 (4) : . [epub] 20190411

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30978967

Massive toxic blooms of cyanobacteria represent a major threat to water supplies worldwide. Here, the biological activities of lipopolysaccharide (LPS) isolated from Microcystis aeruginosa, the most prominent cyanobacteria in water bloom, were studied. LPS was isolated from complex environmental water bloom samples dominated by M. aeruginosa, and from laboratory cultures of non-axenic as well as axenic M. aeruginosa strains PCC7806 and HAMBI/UHCC130. Employing human blood-based in vitro tests, the LPS isolated from complex water bloom revealed the priming of both major blood phagocyte population monocytes and polymorphonuclear leukocytes documented by the increased surface expression of CD11b and CD66b. This was accompanied by a water bloom LPS-mediated dose-dependent induction of tumor necrosis factor α, interleukin-1β, and interleukin-6 production. In accordance with its priming effects, water bloom LPS induced significant activation of p38 and ERK1/2 kinases, as well as NF-κB phosphorylation, in isolated polymorphonuclear leukocytes. Interestingly, the pro-inflammatory potential of LPS from the axenic strain of M. aeruginosa was not lower compared to that of LPS isolated from non-axenic strains. In contrast to the biological activity, water bloom LPS revealed almost twice higher pyrogenicity levels compared to Escherichia coli LPS, as analyzed by the PyroGene test. Moreover, LPS from the non-axenic culture exhibited higher endotoxin activity in comparison to LPS from axenic strains. Taking the above findings together, M. aeruginosa LPS can contribute to the health risks associated with contamination by complex water bloom mass.

Zobrazit více v PubMed

Harke M.J., Steffen M.M., Gobler C.J., Otten T.G., Wilhelm S.W., Wood S.A., Paerl H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae. 2016;54:4–20. doi: 10.1016/j.hal.2015.12.007. PubMed DOI

Huisman J., Codd G.A., Paerl H.W., Ibelings B.W., Verspagen J.M.H., Visser P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI

Berg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 2009;3:314–325. doi: 10.1038/ismej.2008.110. PubMed DOI

Rastogi R.P., Madamwar D., Incharoensakdi A. Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Front. Microbiol. 2015;6:22. doi: 10.3389/fmicb.2015.01254. PubMed DOI PMC

Blaha L., Babica P., Marsalek B. Toxins produced in cyanobacterial water blooms—Toxicity and risks. Interdiscip. Toxicol. 2009;2:36–41. doi: 10.2478/v10102-009-0006-2. PubMed DOI PMC

Svircev Z., Drobac D., Tokodi N., Mijovic B., Codd G.A., Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 2017;91:621–650. doi: 10.1007/s00204-016-1921-6. PubMed DOI

Bourke A.T.C., Hawes R.B., Nelson A., Stallman N.D. An outbreak of hepato-enteritis (the palm island mystery disease) possibly caused by algal intoxication. Toxicon. 1983;21:45–48. doi: 10.1016/0041-0101(83)90151-4. DOI

Griffiths D.J., Saker M.L. The palm island mystery disease 20 years on: A review of research on the cyanotoxin cylindrospermopsin. Environ. Toxicol. 2003;18:78–93. doi: 10.1002/tox.10103. PubMed DOI

Anadotter H., Cronberg G., Lawton L.A., Hansson H.-B., Gothe U., Skulberg O.M. An Extensive Outbreak of Gastroenteritis Associated with the Toxic Vyanobacterium Planktothrix Agardhii (Oscillatoriales, Cyanophyceae) in scania, South Sweden. In: Chorus I., editor. Cyanotoxins, Occurence, Causes, Conseqquences. Springer; Berlin, Germany: 2001.

Hayman J. Beyond the barcoo—Probable human tropical cyanobacterial poisoning in outback Australia. Med. J. Aust. 1992;157:794–796. PubMed

Stewart I., Schluter P.J., Shaw G.R. Cyanobacterial lipopolysaccharides and human health—A review. Environ. Health Glob. Access Sci. Source. 2006;5:7. doi: 10.1186/1476-069X-5-7. PubMed DOI PMC

Durai P., Batool M., Choi S. Structure and effects of cyanobacterial lipopolysaccharides. Mar. Drugs. 2015;13:4217–4230. doi: 10.3390/md13074217. PubMed DOI PMC

Carmichael W.W., Billings W.H. Water-Associated Human Illness in Northeast Pennsylvania and Its Suspected Association with Blue-Green Algae Blooms. Springer; New York, NY, USA: 1981.

Dillenberg H.O., Dehnel M.K. Toxic waterbloom in saskatchewan, 1959. Can. Med. Assoc. J. 1960;83:1151–1154. PubMed PMC

Rapala J., Robertson A., Negri A.P., Berg K.A., Tuomi P., Lyra C., Erkomaa K., Lahti K., Hoppu K., Lepisto L. First report of saxitoxin in finnish lakes and possible associated effects on human health. Environ. Toxicol. 2005;20:331–340. doi: 10.1002/tox.20109. PubMed DOI

Turner P.C., Gammie A.J., Hollinrake K., Codd G.A. Pneumonia associated with contact with cyanobacteria. BMJ. 1990;300:1440–1441. doi: 10.1136/bmj.300.6737.1440. PubMed DOI PMC

Adamovsky O., Moosova Z., Pekarova M., Basu A., Babica P., Svihalkova Sindlerova L., Kubala L., Blaha L. Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ. Sci. Technol. 2015;49:12457–12464. doi: 10.1021/acs.est.5b02049. PubMed DOI

McLellan N.L., Manderville R.A. Toxic mechanisms of microcystins in mammals. Toxicol. Res. 2017;6:391–405. doi: 10.1039/C7TX00043J. PubMed DOI PMC

Macagno A., Molteni M., Rinaldi A., Bertoni F., Lanzavecchia A., Rossetti C., Sallusto F. A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression. J. Exp. Med. 2006;203:1481–1492. doi: 10.1084/jem.20060136. PubMed DOI PMC

Matiasovic J., Stepanova H., Volf J., Kubala L., Ovesna P., Rychlik I., Faldyna M. Influence of the lipopolysaccharide structure of salmonella enterica serovar enteritidis on interactions with pig neutrophils. Vet. Microbiol. 2011;150:167–172. doi: 10.1016/j.vetmic.2011.01.007. PubMed DOI

Fujii M., Sato Y., Ito H., Masago Y., Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and o-chain from the freshwater cyanobacterium microcystis aeruginosa nies-87. J. Appl. Microbiol. 2012;113:896–903. doi: 10.1111/j.1365-2672.2012.05405.x. PubMed DOI

Jurgens U.J., Martin C., Weckesser J. Cell wall constituents of microcystis sp. Pcc 7806. FEMS Microbiol. Lett. 1989;53:47–51. doi: 10.1016/0378-1097(89)90364-9. PubMed DOI

Martin C., Codd G.A., Siegelman H.W., Weckesser J. Lipopolysaccharides and polysaccharides of the cell-envelope of toxic microcystis-aeruginosa strains. Arch. Microbiol. 1989;152:90–94. doi: 10.1007/BF00447017. DOI

Vancamelbeke M., Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017;11:821–834. doi: 10.1080/17474124.2017.1343143. PubMed DOI PMC

Karima R., Matsumoto S., Higashi H., Matsushima K. The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today. 1999;5:123–132. doi: 10.1016/S1357-4310(98)01430-0. PubMed DOI

Pop-Began V., Paunescu V., Grigorean V., Pop-Began D., Popescu C. Molecular mechanisms in the pathogenesis of sepsis. J. Med. Life. 2014;7:38–41. PubMed PMC

Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–151. doi: 10.1016/j.cyto.2008.01.006. PubMed DOI

Vogt K.L., Summers C., Chilvers E.R., Condliffe A.M. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur. J. Clin. Investig. 2018;48:e12967. doi: 10.1111/eci.12967. PubMed DOI

Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: Facts beyond expression. Front. Immunol. 2014;5:508. doi: 10.3389/fimmu.2014.00508. PubMed DOI PMC

Shiraishi H. Association of heterotrophic bacteria with aggregated arthrospira platensis exopolysaccharides: Implications in the induction of axenic cultures. Biosci. Biotechnol. Biochem. 2015;79:331–341. doi: 10.1080/09168451.2014.972333. PubMed DOI

Ueda H., Otsuka S., Senoo K. Community composition of bacteria co-cultivated with microalgae in non-axenic algal cultures. Microbiol. Cult. Coll. 2009;25:21–25.

Blahova L., Adamovsky O., Kubala L., Svihalkova Sindlerova L., Zounkova R., Blaha L. The isolation and characterization of lipopolysaccharides from microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon. 2013;76:187–196. doi: 10.1016/j.toxicon.2013.10.011. PubMed DOI

Jaja-Chimedza A., Gantar M., Mayer G.D., Gibbs P.D., Berry J.P. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (danio rerio) embryo. Toxins. 2012;4:390–404. doi: 10.3390/toxins4060390. PubMed DOI PMC

Mayer A.M., Clifford J.A., Aldulescu M., Frenkel J.A., Holland M.A., Hall M.L., Glaser K.B., Berry J. Cyanobacterial microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B(2), cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia. Toxicol. Sci. 2011;121:63–72. doi: 10.1093/toxsci/kfr045. PubMed DOI

Mayer A.M., Murphy J., MacAdam D., Osterbauer C., Baseer I., Hall M.L., Feher D., Williams P. Classical and alternative activation of cyanobacterium oscillatoria sp. Lipopolysaccharide-treated rat microglia in vitro. Toxicol. Sci. 2016;149:484–495. doi: 10.1093/toxsci/kfv251. PubMed DOI PMC

Ohkouchi Y., Tajima S., Nomura M., Itoh S. Inflammatory responses and potencies of various lipopolysaccharides from bacteria and cyanobacteria in aquatic environments and water supply systems. Toxicon. 2015;97:23–31. doi: 10.1016/j.toxicon.2015.02.003. PubMed DOI

Swanson-Mungerson M., Incrocci R., Subramaniam V., Williams P., Hall M.L., Mayer A.M.S. Effects of cyanobacteria oscillatoria sp. Lipopolysaccharide on b cell activation and toll-like receptor 4 signaling. Toxicol. Lett. 2017;275:101–107. doi: 10.1016/j.toxlet.2017.05.013. PubMed DOI PMC

Fournier B.M., Parkos C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–366. doi: 10.1038/mi.2012.24. PubMed DOI

Eiler A., Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four swedish lakes. Environ. Microbiol. 2004;6:1228–1243. doi: 10.1111/j.1462-2920.2004.00657.x. PubMed DOI

Coats S.R., Do C.T., Karimi-Naser L.M., Braham P.H., Darveau R.P. Antagonistic lipopolysaccharides block E. Coli lipopolysaccharide function at human tlr4 via interaction with the human md-2 lipopolysaccharide binding site. Cell Microbiol. 2007;9:1191–1202. doi: 10.1111/j.1462-5822.2006.00859.x. PubMed DOI

Coats S.R., Pham T.T., Bainbridge B.W., Reife R.A., Darveau R.P. Md-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize escherichia coli lipopolysaccharide at the tlr4 signaling complex. J. Immunol. 2005;175:4490–4498. doi: 10.4049/jimmunol.175.7.4490. PubMed DOI

Ernst R.K., Adams K.N., Moskowitz S.M., Kraig G.M., Kawasaki K., Stead C.M., Trent M.S., Miller S.I. The pseudomonas aeruginosa lipid a deacylase: Selection for expression and loss within the cystic fibrosis airway. J. Bacteriol. 2006;188:191–201. doi: 10.1128/JB.188.1.191-201.2006. PubMed DOI PMC

Suomalainen M., Lobo L.A., Brandenburg K., Lindner B., Virkola R., Knirel Y.A., Anisimov A.P., Holst O., Korhonen T.K. Temperature-induced changes in the lipopolysaccharide of yersinia pestis affect plasminogen activation by the pla surface protease. Infect. Immun. 2010;78:2644–2652. doi: 10.1128/IAI.01329-09. PubMed DOI PMC

Bernardova K., Babica P., Marsalek B., Blaha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J. Appl. Toxicol. 2008;28:72–77. doi: 10.1002/jat.1257. PubMed DOI

Dehus O., Hartung T., Hermann C. Endotoxin evaluation of eleven lipopolysaccharides by whole blood assay does not always correlate with limulus amebocyte lysate assay. J. Endotoxin Res. 2006;12:171–180. doi: 10.1177/09680519060120030401. PubMed DOI

Bartova K., Hilscherova K., Babica P., Marsalek B., Blaha L. Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga pseudokirchneriella subcapitata and comparison with the model oxidative stressor—Herbicide paraquat. Environ. Toxicol. 2011;26:641–648. doi: 10.1002/tox.20601. PubMed DOI

Reasoner D.J., Geldreich E.E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985;49:1–7. PubMed PMC

Blaha L., Blahova L., Kovalova L., Adamovsky O., Babica P., Marsalek B. Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. J. Serb. Chem. Soc. 2010;75:1303–1312. doi: 10.2298/JSC100113106B. DOI

Javůrek J. Retinoid compounds associated with water bloomsdominated by microcystis species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI

Bláhová L., Babica P., Maršálková E., Maršálek B., Bláha L. Concentrations and seasonal trends of extracellular microcystins in freshwaters of the czech republic—Results of the national monitoring program. CLEAN Soil Air Water. 2007;35:348–354. doi: 10.1002/clen.200700010. DOI

Jancula D., Strakova L., Sadilek J., Marsalek B., Babica P. Survey of cyanobacterial toxins in czech water reservoirs—The first observation of neurotoxic saxitoxins. Environ. Sci. Pollut. Res. Int. 2014;21:8006–8015. doi: 10.1007/s11356-014-2699-9. PubMed DOI

Jasa L., Sadilek J., Kohoutek J., Strakova L., Marsalek B., Babica P. Application of passive sampling for sensitive time-integrative monitoring of cyanobacterial toxins microcystins in drinking water treatment plants. Water Res. 2019;153:108–120. doi: 10.1016/j.watres.2018.12.059. PubMed DOI

Znachor P., Jurczak T., Komarkova J., Jezberova J., Mankiewicz J., Kastovska K., Zapomelova E. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic czech reservoirs. Environ. Toxicol. 2006;21:236–243. doi: 10.1002/tox.20176. PubMed DOI

Kolarova H., Klinke A., Kremserova S., Adam M., Pekarova M., Baldus S., Eiserich J.P., Kubala L. Myeloperoxidase induces the priming of platelets. Free Radic. Biol. Med. 2013;61:357–369. doi: 10.1016/j.freeradbiomed.2013.04.014. PubMed DOI

Gallova L., Kubala L., Ciz M., Lojek A. Il-10 does not affect oxidative burst and expression of selected surface antigen on human blood phagocytes in vitro. Physiol. Res. 2004;53:199–208. PubMed

Pekarova M., Koudelka A., Kolarova H., Ambrozova G., Klinke A., Cerna A., Kadlec J., Trundova M., Sindlerova Svihalkova L., Kuchta R., et al. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vasc. Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. Nih image to imagej: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace