Cyanobacterial Harmful Bloom Lipopolysaccharides Induce Pro-Inflammatory Effects in Immune and Intestinal Epithelial Cells In Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36977060
PubMed Central
PMC10058507
DOI
10.3390/toxins15030169
PII: toxins15030169
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, cyanobacterial harmful bloom, inflammation, intestine, lipopolysaccharide, macrophage,
- MeSH
- endotoxiny metabolismus MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- Microcystis * MeSH
- sinice * metabolismus MeSH
- škodlivý vodní květ MeSH
- sladká voda mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endotoxiny MeSH
- lipopolysacharidy MeSH
Freshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells. We isolated LPSs of four CyanoHABs dominated by different cyanobacterial species and LPSs of four laboratory cultures representing the respective dominant cyanobacterial genera. Two intestinal and one macrophage cell lines were used to detect in vitro pro-inflammatory activity of the LPS. All LPSs isolated from CyanoHABs and laboratory cultures induced cytokines production in at least one in vitro model, except for LPSs from the Microcystis PCC7806 culture. LPSs isolated from cyanobacteria showed unique migration patterns in SDS-PAGE that were qualitatively distinct from those of endotoxins from Gram-negative bacteria. There was no clear relationship between the biological activity of the LPS and the share of genomic DNA of Gram-negative bacteria in the respective biomass. Thus, the total share of Gram-negative bacteria, or the presence of Escherichia coli-like LPSs, did not explain the observed pro-inflammatory activities. The pro-inflammatory properties of environmental mixtures of LPSs from CyanoHABs indicate their human health hazards, and further attention should be given to their assessment and monitoring.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Experimental Phycology and Ecotoxicology Institute of Botany 60200 Brno Czech Republic
RECETOX Faculty of Science Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Blahova L., Adamovsky O., Kubala L., Svihalkova Sindlerova L., Zounkova R., Blaha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon Off. J. Int. Soc. Toxinology. 2013;76:187–196. doi: 10.1016/j.toxicon.2013.10.011. PubMed DOI
Kubickova B., Babica P., Hilscherová K., Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI
Novakova K., Babica P., Adamovsky O., Blaha L. Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures. Toxicon Off. J. Int. Soc. Toxinology. 2011;58:76–84. doi: 10.1016/j.toxicon.2011.05.006. PubMed DOI
Huisman J., Codd G.A., Paerl H.W., Ibelings B.W., Verspagen J.M.H., Visser P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI
Vasicek O., Hajek J., Blahova L., Hrouzek P., Babica P., Kubala L., Sindlerova L. Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae. 2020;96:101849. doi: 10.1016/j.hal.2020.101849. PubMed DOI
Durai P., Batool M., Choi S. Structure and Effects of Cyanobacterial Lipopolysaccharides. Mar. Drugs. 2015;13:4217–4230. doi: 10.3390/md13074217. PubMed DOI PMC
Sulc R., Szekely G., Shinde S., Wierzbicka C., Vilela F., Bauer D., Sellergren B. Phospholipid imprinted polymers as selective endotoxin scavengers. Sci. Rep. 2017;7:44299. doi: 10.1038/srep44299. PubMed DOI PMC
Mankiewicz-Boczek J., Font-Najera A. Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir. Sci. Rep. 2022;12:19332. doi: 10.1038/s41598-022-23671-2. PubMed DOI PMC
Perez-Carrascal O.M., Tromas N., Terrat Y., Moreno E., Giani A., Correa Braga Marques L., Fortin N., Shapiro B.J. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome. 2021;9:194. doi: 10.1186/s40168-021-01140-8. PubMed DOI PMC
Tu J., Chen L., Gao S., Zhang J., Bi C., Tao Y., Lu N., Lu Z. Obtaining Genome Sequences of Mutualistic Bacteria in Single Microcystis Colonies. Int. J. Mol. Sci. 2019;20:5047. doi: 10.3390/ijms20205047. PubMed DOI PMC
Berg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 2009;3:314–325. doi: 10.1038/ismej.2008.110. PubMed DOI
Caroff M., Novikov A. Lipopolysaccharides: Structure, function and bacterial identifications. OCL. 2020;27:31. doi: 10.1051/ocl/2020025. DOI
Gemma S., Molteni M., Rosseti C. Lipopolysaccharides in Cyanobacteria: A Brief Overview. Adv. Microbiol. 2016;6:391–397. doi: 10.4236/aim.2016.65038. DOI
Welker M. Cyanobacterial Lipopolysaccharides (LPS) In: Chorus I., Welker M., editors. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. 2nd ed. CRC Press; London, UK: 2021. pp. 137–148. DOI
Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–151. doi: 10.1016/j.cyto.2008.01.006. PubMed DOI
Maeshima N., Fernandez R.C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol. 2013;3:3. doi: 10.3389/fcimb.2013.00003. PubMed DOI PMC
Akira S., Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004;4:499–511. doi: 10.1038/nri1391. PubMed DOI
Allaire J.M., Crowley S.M., Law H.T., Chang S.Y., Ko H.J., Vallance B.A. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018;39:677–696. doi: 10.1016/j.it.2018.04.002. PubMed DOI
Vasicek O., Lojek A., Ciz M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J. Physiol. Biochem. 2020;76:49–60. doi: 10.1007/s13105-019-00714-3. PubMed DOI
Carmichael W.W., Billings W.H. Water-Associated Human Illness in Northeast Pennsylvania and its Suspected Association with Blue-Green Algae Blooms. Springer; Boston, MA, USA: 1981.
Dillenberg H.O., Dehnel M.K. Toxic waterbloom in Saskatchewan, 1959. Can. Med. Assoc. J. 1960;83:1151–1154. PubMed PMC
Rapala J., Robertson A., Negri A.P., Berg K.A., Tuomi P., Lyra C., Erkomaa K., Lahti K., Hoppu K., Lepisto L. First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ. Toxicol. 2005;20:331–340. doi: 10.1002/tox.20109. PubMed DOI
Turner P.C., Gammie A.J., Hollinrake K., Codd G.A. Pneumonia associated with contact with cyanobacteria. BMJ. 1990;300:1440–1441. doi: 10.1136/bmj.300.6737.1440. PubMed DOI PMC
Moosova Z., Sindlerova L., Ambruzova B., Ambrozova G., Vasicek O., Velki M., Babica P., Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins. 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC
Swanson-Mungerson M., Incrocci R., Subramaniam V., Williams P., Hall M.L., Mayer A.M.S. Effects of cyanobacteria Oscillatoria sp. lipopolysaccharide on B cell activation and Toll-like receptor 4 signaling. Toxicol. Lett. 2017;275:101–107. doi: 10.1016/j.toxlet.2017.05.013. PubMed DOI PMC
Swanson-Mungerson M., Williams P., Gurr J.R., Incrocci R., Subramaniam V., Radowska K., Hall M.L., Mayer A.M.S. Biochemical and Functional Analysis of Cyanobacterium Geitlerinema sp. LPS on Human Monocytes. Toxicol. Sci. 2019;171:421–430. doi: 10.1093/toxsci/kfz153. PubMed DOI PMC
Labohá P., Sychrová E., Brózman O., Sovadinová I., Bláhová L., Prokeš R., Ondráček J., Babica P. Cyanobacteria, Cyanotoxins and Lipopolysaccharides in Aerosols From Inland Freshwaters and Their Effects on Human Bronchial Cells. Environ. Toxicol. Pharmacol. 2023;98:104373. doi: 10.1016/j.etap.2023.104073. PubMed DOI
Swartzendruber J.A., Del Toro R.M., Incrocci R., Seangmany N., Gurr J.R., Mayer A.M.S., Williams P.G., Swanson-Mungerson M. Lipopolysaccharide from the Cyanobacterium Geitlerinema sp. Induces Neutrophil Infiltration and Lung Inflammation. Toxins. 2022;14:267. doi: 10.3390/toxins14040267. PubMed DOI PMC
Pipal M., Priebojova J., Koci T., Blahova L., Smutna M., Hilscherova K. Field cyanobacterial blooms producing retinoid compounds cause teratogenicity in zebrafish embryos. Chemosphere. 2020;241:125061. doi: 10.1016/j.chemosphere.2019.125061. PubMed DOI
Javůrek J. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2019. Biodetection Systems in the Assessment of Endocrine Disrupting Potential of Compounds in Surface Waters.
Szmucová V. Master’s Thesis. Masaryk University; Brno, Czech Republic: 2019. Instrumental and Biological In Vitro Methods for Analyses of Neurotoxic Cyanobacterial Metabolites.
Javurek J., Sychrova E., Smutna M., Bittner M., Kohoutek J., Adamovsky O., Novakova K., Smetanova S., Hilscherova K. Retinoid compounds associated with water blooms dominated by Microcystis species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI
Sarkar S., Ulett G.C., Totsika M., Phan M.D., Schembri M.A. Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli. PLoS ONE. 2014;9:e94786. doi: 10.1371/journal.pone.0094786. PubMed DOI PMC
Werts C., Tapping R.I., Mathison J.C., Chuang T.H., Kravchenko V., Saint Girons I., Haake D.A., Godowski P.J., Hayashi F., Ozinsky A., et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2001;2:346–352. doi: 10.1038/86354. PubMed DOI
Gupta S.K., Masinick S., Garrett M., Hazlett L.D. Pseudomonas Aeruginosa Lipopolysaccharide Binds Galectin-3 and Other Human Corneal Epithelial Proteins. Infect. Immun. 1997;65:2747–2753. doi: 10.1128/iai.65.7.2747-2753.1997. PubMed DOI PMC
Hao Y., Murphy K., Lo R.Y., Khursigara C.M., Lam J.S. Single-Nucleotide Polymorphisms Found in the MigA and WbpX Glycosyltransferase Genes Account for the Intrinsic Lipopolysaccharide Defects Exhibited by Pseudomonas Aeruginosa PA14. J. Bacteriol. 2015;197:2780–2791. doi: 10.1128/JB.00337-15. PubMed DOI PMC
Pourcel C., Midoux C., Vergnaud G., Latino L. The Basis for Natural Multiresistance to Phage in Pseudomonas Aeruginosa. Antibiotics. 2020;9:339. doi: 10.3390/antibiotics9060339. PubMed DOI PMC
Zhang H., Jia J., Chen S., Huang T., Wang Y., Zhao Z., Feng J., Hao H., Li S., Ma X. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir. Int. J. Environ. Res. Public Health. 2018;15:361. doi: 10.3390/ijerph15020361. PubMed DOI PMC
Zhao X., Wenzel C.Q., Lam J.S. Nonradiolabeling assay for WaaP, an essential sugar kinase involved in biosynthesis of core lipopolysaccharide of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2002;46:2035–2037. doi: 10.1128/AAC.46.6.2035-2037.2002. PubMed DOI PMC
Ghosh S.S., Wang J., Yannie P.J., Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020;4:bvz039. doi: 10.1210/jendso/bvz039. PubMed DOI PMC
Bernardova K., Babica P., Marsalek B., Blaha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J. Appl. Toxicol. JAT. 2008;28:72–77. doi: 10.1002/jat.1257. PubMed DOI
Smith D.J., Tan J.Y., Powers M.A., Lin X.N., Davis T.W., Dick G.J. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 2021;23:3020–3036. doi: 10.1111/1462-2920.15514. PubMed DOI
Ohkouchi Y., Tajima S., Nomura M., Itoh S. Inflammatory responses and potencies of various lipopolysaccharides from bacteria and cyanobacteria in aquatic environments and water supply systems. Toxicon Off. J. Int. Soc. Toxinology. 2015;97:23–31. doi: 10.1016/j.toxicon.2015.02.003. PubMed DOI
Snyder D.S., Brahamsha B., Azadi P., Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J. Bacteriol. 2009;191:5499–5509. doi: 10.1128/JB.00121-09. PubMed DOI PMC
Fujii M., Sato Y., Ito H., Masago Y., Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J. Appl. Microbiol. 2012;113:896–903. doi: 10.1111/j.1365-2672.2012.05405.x. PubMed DOI
Haeffner-Cavaillon N., Carreno M.P., Aussel L., Caroff M. Molecular aspects of endotoxins relevant to their biological functions. Nephrol. Dial. Transpl. 1999;14:853–860. doi: 10.1093/ndt/14.4.853. PubMed DOI
Ucieklak K., Koj S., Niedziela T. Bordetella holmesii Lipopolysaccharide Hide and Seek Game with Pertussis: Structural Analysis of the O-Specific Polysaccharide and the Core Oligosaccharide of the Type Strain ATCC 51541. Int. J. Mol. Sci. 2020;21:6433. doi: 10.3390/ijms21176433. PubMed DOI PMC
Poole S., Dawson P., Gaines Das R.E. Second international standard for endotoxin: Calibration in an international collaborative study. J. Endotoxin Res. 1997;4:221–231. doi: 10.1177/096805199700400308. DOI
Jurga A.M., Rojewska E., Makuch W., Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. Pharm. Biol. 2018;56:275–286. doi: 10.1080/13880209.2018.1457061. PubMed DOI PMC
Huang Z., Jiang C., Xu S., Zheng X., Lv P., Wang C., Wang D., Zhuang X. Spatiotemporal changes of bacterial communities during a cyanobacterial bloom in a subtropical water source reservoir ecosystem in China. Sci. Rep. 2022;12:14573. doi: 10.1038/s41598-022-17788-7. PubMed DOI PMC
Camba-Gomez M., Arosa L., Gualillo O., Conde-Aranda J. Chemokines and chemokine receptors in inflammatory bowel disease: Recent findings and future perspectives. Drug Discov. Today. 2022;27:1167–1175. doi: 10.1016/j.drudis.2021.12.004. PubMed DOI
Jia S.N., Han Y.B., Yang R., Yang Z.C. Chemokines in colon cancer progression. Semin. Cancer Biol. 2022;86:400–407. doi: 10.1016/j.semcancer.2022.02.007. PubMed DOI
Mello J.D.C., Gomes L.E.M., Silva J.F., Siqueira N.S.N., Pascoal L.B., Martinez C.A.R., Ayrizono M.L.S., Leal R.F. The role of chemokines and adipokines as biomarkers of Crohn’s disease activity: A systematic review of the literature. Am. J. Transl. Res. 2021;13:8561–8574. PubMed PMC
Zhu Y., Yang S., Zhao N., Liu C., Zhang F., Guo Y., Liu H. CXCL8 chemokine in ulcerative colitis. Biomed. Pharmacother. 2021;138:111427. doi: 10.1016/j.biopha.2021.111427. PubMed DOI
Curciarello R., Canziani K.E., Docena G.H., Muglia C.I. Contribution of Non-immune Cells to Activation and Modulation of the Intestinal Inflammation. Front. Immunol. 2019;10:647. doi: 10.3389/fimmu.2019.00647. PubMed DOI PMC
Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019;20:6008. doi: 10.3390/ijms20236008. PubMed DOI PMC
Luissint A.C., Parkos C.A., Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology. 2016;151:616–632. doi: 10.1053/j.gastro.2016.07.008. PubMed DOI PMC
Zhang J.M., An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007;45:27–37. doi: 10.1097/AIA.0b013e318034194e. PubMed DOI PMC
Hillebrand H., Durselen C.D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI
Skacelova O., Leps J. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia. 2014;724:67–77. doi: 10.1007/s10750-013-1723-2. DOI
Laemmli U.K. Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Sehnal L., Smutna M., Blahova L., Babica P., Splichalova P., Hilscherova K. The Origin of Teratogenic Retinoids in Cyanobacteria. Toxins. 2022;14:636. doi: 10.3390/toxins14090636. PubMed DOI PMC
Lang-Yona N., Lehahn Y., Herut B., Burshtein N., Rudich Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci. Total. Environ. 2014;499:311–318. doi: 10.1016/j.scitotenv.2014.08.054. PubMed DOI
Bino L., Kucera J., Stefkova K., Svihalkova Sindlerova L., Lanova M., Kudova J., Kubala L., Pachernik J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem. Biol. Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI
Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI
Pekarova M., Koudelka A., Kolarova H., Ambrozova G., Klinke A., Cerna A., Kadlec J., Trundova M., Sindlerova Svihalkova L., Kuchta R., et al. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vasc. Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005. PubMed DOI