Cyanobacterial Harmful Bloom Lipopolysaccharides Induce Pro-Inflammatory Effects in Immune and Intestinal Epithelial Cells In Vitro

. 2023 Feb 21 ; 15 (3) : . [epub] 20230221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36977060

Freshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells. We isolated LPSs of four CyanoHABs dominated by different cyanobacterial species and LPSs of four laboratory cultures representing the respective dominant cyanobacterial genera. Two intestinal and one macrophage cell lines were used to detect in vitro pro-inflammatory activity of the LPS. All LPSs isolated from CyanoHABs and laboratory cultures induced cytokines production in at least one in vitro model, except for LPSs from the Microcystis PCC7806 culture. LPSs isolated from cyanobacteria showed unique migration patterns in SDS-PAGE that were qualitatively distinct from those of endotoxins from Gram-negative bacteria. There was no clear relationship between the biological activity of the LPS and the share of genomic DNA of Gram-negative bacteria in the respective biomass. Thus, the total share of Gram-negative bacteria, or the presence of Escherichia coli-like LPSs, did not explain the observed pro-inflammatory activities. The pro-inflammatory properties of environmental mixtures of LPSs from CyanoHABs indicate their human health hazards, and further attention should be given to their assessment and monitoring.

Zobrazit více v PubMed

Blahova L., Adamovsky O., Kubala L., Svihalkova Sindlerova L., Zounkova R., Blaha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon Off. J. Int. Soc. Toxinology. 2013;76:187–196. doi: 10.1016/j.toxicon.2013.10.011. PubMed DOI

Kubickova B., Babica P., Hilscherová K., Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI

Novakova K., Babica P., Adamovsky O., Blaha L. Modulation of gap-junctional intercellular communication by a series of cyanobacterial samples from nature and laboratory cultures. Toxicon Off. J. Int. Soc. Toxinology. 2011;58:76–84. doi: 10.1016/j.toxicon.2011.05.006. PubMed DOI

Huisman J., Codd G.A., Paerl H.W., Ibelings B.W., Verspagen J.M.H., Visser P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI

Vasicek O., Hajek J., Blahova L., Hrouzek P., Babica P., Kubala L., Sindlerova L. Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae. 2020;96:101849. doi: 10.1016/j.hal.2020.101849. PubMed DOI

Durai P., Batool M., Choi S. Structure and Effects of Cyanobacterial Lipopolysaccharides. Mar. Drugs. 2015;13:4217–4230. doi: 10.3390/md13074217. PubMed DOI PMC

Sulc R., Szekely G., Shinde S., Wierzbicka C., Vilela F., Bauer D., Sellergren B. Phospholipid imprinted polymers as selective endotoxin scavengers. Sci. Rep. 2017;7:44299. doi: 10.1038/srep44299. PubMed DOI PMC

Mankiewicz-Boczek J., Font-Najera A. Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir. Sci. Rep. 2022;12:19332. doi: 10.1038/s41598-022-23671-2. PubMed DOI PMC

Perez-Carrascal O.M., Tromas N., Terrat Y., Moreno E., Giani A., Correa Braga Marques L., Fortin N., Shapiro B.J. Single-colony sequencing reveals microbe-by-microbiome phylosymbiosis between the cyanobacterium Microcystis and its associated bacteria. Microbiome. 2021;9:194. doi: 10.1186/s40168-021-01140-8. PubMed DOI PMC

Tu J., Chen L., Gao S., Zhang J., Bi C., Tao Y., Lu N., Lu Z. Obtaining Genome Sequences of Mutualistic Bacteria in Single Microcystis Colonies. Int. J. Mol. Sci. 2019;20:5047. doi: 10.3390/ijms20205047. PubMed DOI PMC

Berg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 2009;3:314–325. doi: 10.1038/ismej.2008.110. PubMed DOI

Caroff M., Novikov A. Lipopolysaccharides: Structure, function and bacterial identifications. OCL. 2020;27:31. doi: 10.1051/ocl/2020025. DOI

Gemma S., Molteni M., Rosseti C. Lipopolysaccharides in Cyanobacteria: A Brief Overview. Adv. Microbiol. 2016;6:391–397. doi: 10.4236/aim.2016.65038. DOI

Welker M. Cyanobacterial Lipopolysaccharides (LPS) In: Chorus I., Welker M., editors. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. 2nd ed. CRC Press; London, UK: 2021. pp. 137–148. DOI

Lu Y.C., Yeh W.C., Ohashi P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–151. doi: 10.1016/j.cyto.2008.01.006. PubMed DOI

Maeshima N., Fernandez R.C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol. 2013;3:3. doi: 10.3389/fcimb.2013.00003. PubMed DOI PMC

Akira S., Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004;4:499–511. doi: 10.1038/nri1391. PubMed DOI

Allaire J.M., Crowley S.M., Law H.T., Chang S.Y., Ko H.J., Vallance B.A. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018;39:677–696. doi: 10.1016/j.it.2018.04.002. PubMed DOI

Vasicek O., Lojek A., Ciz M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J. Physiol. Biochem. 2020;76:49–60. doi: 10.1007/s13105-019-00714-3. PubMed DOI

Carmichael W.W., Billings W.H. Water-Associated Human Illness in Northeast Pennsylvania and its Suspected Association with Blue-Green Algae Blooms. Springer; Boston, MA, USA: 1981.

Dillenberg H.O., Dehnel M.K. Toxic waterbloom in Saskatchewan, 1959. Can. Med. Assoc. J. 1960;83:1151–1154. PubMed PMC

Rapala J., Robertson A., Negri A.P., Berg K.A., Tuomi P., Lyra C., Erkomaa K., Lahti K., Hoppu K., Lepisto L. First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ. Toxicol. 2005;20:331–340. doi: 10.1002/tox.20109. PubMed DOI

Turner P.C., Gammie A.J., Hollinrake K., Codd G.A. Pneumonia associated with contact with cyanobacteria. BMJ. 1990;300:1440–1441. doi: 10.1136/bmj.300.6737.1440. PubMed DOI PMC

Moosova Z., Sindlerova L., Ambruzova B., Ambrozova G., Vasicek O., Velki M., Babica P., Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins. 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC

Swanson-Mungerson M., Incrocci R., Subramaniam V., Williams P., Hall M.L., Mayer A.M.S. Effects of cyanobacteria Oscillatoria sp. lipopolysaccharide on B cell activation and Toll-like receptor 4 signaling. Toxicol. Lett. 2017;275:101–107. doi: 10.1016/j.toxlet.2017.05.013. PubMed DOI PMC

Swanson-Mungerson M., Williams P., Gurr J.R., Incrocci R., Subramaniam V., Radowska K., Hall M.L., Mayer A.M.S. Biochemical and Functional Analysis of Cyanobacterium Geitlerinema sp. LPS on Human Monocytes. Toxicol. Sci. 2019;171:421–430. doi: 10.1093/toxsci/kfz153. PubMed DOI PMC

Labohá P., Sychrová E., Brózman O., Sovadinová I., Bláhová L., Prokeš R., Ondráček J., Babica P. Cyanobacteria, Cyanotoxins and Lipopolysaccharides in Aerosols From Inland Freshwaters and Their Effects on Human Bronchial Cells. Environ. Toxicol. Pharmacol. 2023;98:104373. doi: 10.1016/j.etap.2023.104073. PubMed DOI

Swartzendruber J.A., Del Toro R.M., Incrocci R., Seangmany N., Gurr J.R., Mayer A.M.S., Williams P.G., Swanson-Mungerson M. Lipopolysaccharide from the Cyanobacterium Geitlerinema sp. Induces Neutrophil Infiltration and Lung Inflammation. Toxins. 2022;14:267. doi: 10.3390/toxins14040267. PubMed DOI PMC

Pipal M., Priebojova J., Koci T., Blahova L., Smutna M., Hilscherova K. Field cyanobacterial blooms producing retinoid compounds cause teratogenicity in zebrafish embryos. Chemosphere. 2020;241:125061. doi: 10.1016/j.chemosphere.2019.125061. PubMed DOI

Javůrek J. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: 2019. Biodetection Systems in the Assessment of Endocrine Disrupting Potential of Compounds in Surface Waters.

Szmucová V. Master’s Thesis. Masaryk University; Brno, Czech Republic: 2019. Instrumental and Biological In Vitro Methods for Analyses of Neurotoxic Cyanobacterial Metabolites.

Javurek J., Sychrova E., Smutna M., Bittner M., Kohoutek J., Adamovsky O., Novakova K., Smetanova S., Hilscherova K. Retinoid compounds associated with water blooms dominated by Microcystis species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI

Sarkar S., Ulett G.C., Totsika M., Phan M.D., Schembri M.A. Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli. PLoS ONE. 2014;9:e94786. doi: 10.1371/journal.pone.0094786. PubMed DOI PMC

Werts C., Tapping R.I., Mathison J.C., Chuang T.H., Kravchenko V., Saint Girons I., Haake D.A., Godowski P.J., Hayashi F., Ozinsky A., et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2001;2:346–352. doi: 10.1038/86354. PubMed DOI

Gupta S.K., Masinick S., Garrett M., Hazlett L.D. Pseudomonas Aeruginosa Lipopolysaccharide Binds Galectin-3 and Other Human Corneal Epithelial Proteins. Infect. Immun. 1997;65:2747–2753. doi: 10.1128/iai.65.7.2747-2753.1997. PubMed DOI PMC

Hao Y., Murphy K., Lo R.Y., Khursigara C.M., Lam J.S. Single-Nucleotide Polymorphisms Found in the MigA and WbpX Glycosyltransferase Genes Account for the Intrinsic Lipopolysaccharide Defects Exhibited by Pseudomonas Aeruginosa PA14. J. Bacteriol. 2015;197:2780–2791. doi: 10.1128/JB.00337-15. PubMed DOI PMC

Pourcel C., Midoux C., Vergnaud G., Latino L. The Basis for Natural Multiresistance to Phage in Pseudomonas Aeruginosa. Antibiotics. 2020;9:339. doi: 10.3390/antibiotics9060339. PubMed DOI PMC

Zhang H., Jia J., Chen S., Huang T., Wang Y., Zhao Z., Feng J., Hao H., Li S., Ma X. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir. Int. J. Environ. Res. Public Health. 2018;15:361. doi: 10.3390/ijerph15020361. PubMed DOI PMC

Zhao X., Wenzel C.Q., Lam J.S. Nonradiolabeling assay for WaaP, an essential sugar kinase involved in biosynthesis of core lipopolysaccharide of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2002;46:2035–2037. doi: 10.1128/AAC.46.6.2035-2037.2002. PubMed DOI PMC

Ghosh S.S., Wang J., Yannie P.J., Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020;4:bvz039. doi: 10.1210/jendso/bvz039. PubMed DOI PMC

Bernardova K., Babica P., Marsalek B., Blaha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J. Appl. Toxicol. JAT. 2008;28:72–77. doi: 10.1002/jat.1257. PubMed DOI

Smith D.J., Tan J.Y., Powers M.A., Lin X.N., Davis T.W., Dick G.J. Individual Microcystis colonies harbour distinct bacterial communities that differ by Microcystis oligotype and with time. Environ. Microbiol. 2021;23:3020–3036. doi: 10.1111/1462-2920.15514. PubMed DOI

Ohkouchi Y., Tajima S., Nomura M., Itoh S. Inflammatory responses and potencies of various lipopolysaccharides from bacteria and cyanobacteria in aquatic environments and water supply systems. Toxicon Off. J. Int. Soc. Toxinology. 2015;97:23–31. doi: 10.1016/j.toxicon.2015.02.003. PubMed DOI

Snyder D.S., Brahamsha B., Azadi P., Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J. Bacteriol. 2009;191:5499–5509. doi: 10.1128/JB.00121-09. PubMed DOI PMC

Fujii M., Sato Y., Ito H., Masago Y., Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J. Appl. Microbiol. 2012;113:896–903. doi: 10.1111/j.1365-2672.2012.05405.x. PubMed DOI

Haeffner-Cavaillon N., Carreno M.P., Aussel L., Caroff M. Molecular aspects of endotoxins relevant to their biological functions. Nephrol. Dial. Transpl. 1999;14:853–860. doi: 10.1093/ndt/14.4.853. PubMed DOI

Ucieklak K., Koj S., Niedziela T. Bordetella holmesii Lipopolysaccharide Hide and Seek Game with Pertussis: Structural Analysis of the O-Specific Polysaccharide and the Core Oligosaccharide of the Type Strain ATCC 51541. Int. J. Mol. Sci. 2020;21:6433. doi: 10.3390/ijms21176433. PubMed DOI PMC

Poole S., Dawson P., Gaines Das R.E. Second international standard for endotoxin: Calibration in an international collaborative study. J. Endotoxin Res. 1997;4:221–231. doi: 10.1177/096805199700400308. DOI

Jurga A.M., Rojewska E., Makuch W., Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. Pharm. Biol. 2018;56:275–286. doi: 10.1080/13880209.2018.1457061. PubMed DOI PMC

Huang Z., Jiang C., Xu S., Zheng X., Lv P., Wang C., Wang D., Zhuang X. Spatiotemporal changes of bacterial communities during a cyanobacterial bloom in a subtropical water source reservoir ecosystem in China. Sci. Rep. 2022;12:14573. doi: 10.1038/s41598-022-17788-7. PubMed DOI PMC

Camba-Gomez M., Arosa L., Gualillo O., Conde-Aranda J. Chemokines and chemokine receptors in inflammatory bowel disease: Recent findings and future perspectives. Drug Discov. Today. 2022;27:1167–1175. doi: 10.1016/j.drudis.2021.12.004. PubMed DOI

Jia S.N., Han Y.B., Yang R., Yang Z.C. Chemokines in colon cancer progression. Semin. Cancer Biol. 2022;86:400–407. doi: 10.1016/j.semcancer.2022.02.007. PubMed DOI

Mello J.D.C., Gomes L.E.M., Silva J.F., Siqueira N.S.N., Pascoal L.B., Martinez C.A.R., Ayrizono M.L.S., Leal R.F. The role of chemokines and adipokines as biomarkers of Crohn’s disease activity: A systematic review of the literature. Am. J. Transl. Res. 2021;13:8561–8574. PubMed PMC

Zhu Y., Yang S., Zhao N., Liu C., Zhang F., Guo Y., Liu H. CXCL8 chemokine in ulcerative colitis. Biomed. Pharmacother. 2021;138:111427. doi: 10.1016/j.biopha.2021.111427. PubMed DOI

Curciarello R., Canziani K.E., Docena G.H., Muglia C.I. Contribution of Non-immune Cells to Activation and Modulation of the Intestinal Inflammation. Front. Immunol. 2019;10:647. doi: 10.3389/fimmu.2019.00647. PubMed DOI PMC

Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019;20:6008. doi: 10.3390/ijms20236008. PubMed DOI PMC

Luissint A.C., Parkos C.A., Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology. 2016;151:616–632. doi: 10.1053/j.gastro.2016.07.008. PubMed DOI PMC

Zhang J.M., An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007;45:27–37. doi: 10.1097/AIA.0b013e318034194e. PubMed DOI PMC

Hillebrand H., Durselen C.D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI

Skacelova O., Leps J. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia. 2014;724:67–77. doi: 10.1007/s10750-013-1723-2. DOI

Laemmli U.K. Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Sehnal L., Smutna M., Blahova L., Babica P., Splichalova P., Hilscherova K. The Origin of Teratogenic Retinoids in Cyanobacteria. Toxins. 2022;14:636. doi: 10.3390/toxins14090636. PubMed DOI PMC

Lang-Yona N., Lehahn Y., Herut B., Burshtein N., Rudich Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci. Total. Environ. 2014;499:311–318. doi: 10.1016/j.scitotenv.2014.08.054. PubMed DOI

Bino L., Kucera J., Stefkova K., Svihalkova Sindlerova L., Lanova M., Kudova J., Kubala L., Pachernik J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem. Biol. Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI

Moosova Z., Pekarova M., Sindlerova L.S., Vasicek O., Kubala L., Blaha L., Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI

Pekarova M., Koudelka A., Kolarova H., Ambrozova G., Klinke A., Cerna A., Kadlec J., Trundova M., Sindlerova Svihalkova L., Kuchta R., et al. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vasc. Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...