The Origin of Teratogenic Retinoids in Cyanobacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36136574
PubMed Central
PMC9501733
DOI
10.3390/toxins14090636
PII: toxins14090636
Knihovny.cz E-zdroje
- Klíčová slova
- aldehyde dehydrogenases, biosynthesis, cyanobacteria, reactive oxygen species, retinoids,
- MeSH
- ekosystém MeSH
- retinoidy analýza metabolismus toxicita MeSH
- sinice * metabolismus MeSH
- teratogeny * toxicita MeSH
- tretinoin toxicita MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retinoidy MeSH
- teratogeny * MeSH
- tretinoin MeSH
- voda MeSH
Although information about the occurrence and distribution of retinoids in the environment is scarce, cyanobacterial water blooms have been identified as a significant source of these small molecules. Despite the confirmed presence of retinoids in the freshwater blooms dominated by cyanobacteria and their described teratogenic effects, reliable identification of retinoid producers and the mechanism of their biosynthesis is missing. In this study, the cultures of several taxonomically diverse species of axenic cyanobacteria were confirmed as significant producers of retinoid-like compounds. The consequent bioinformatic analysis suggested that the enzymatic background required for the biosynthesis of all-trans retinoic acid from retinal is not present across phylum Cyanobacteria. However, we demonstrated that retinal conversion into other retinoids can be mediated non-enzymatically by free radical oxidation, which leads to the production of retinoids widely detected in cyanobacteria and environmental water blooms, such as all-trans retinoic acid or all-trans 5,6epoxy retinoic acid. Importantly, the production of these metabolites by cyanobacteria in association with the mass development of water blooms can lead to adverse impacts in aquatic ecosystems regarding the described teratogenicity of retinoids. Moreover, our finding that retinal can be non-enzymatically converted into more bioactive retinoids, also in water, and out of the cells, increases the environmental significance of this process.
Zobrazit více v PubMed
Gutierrez-Mazariegos J., Nadendla E.K., Lima D., Pierzchalski K., Jones J.W., Kane M., Nishikawa J.-I., Hiromori Y., Nakanishi T., Santos M.M., et al. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding. Endocrinology. 2014;155:4275–4286. doi: 10.1210/en.2014-1181. PubMed DOI PMC
Schubert M., Gibert Y. Retinoids in Embryonic Development. Biomolecules. 2020;10:1278. doi: 10.3390/biom10091278. PubMed DOI PMC
Chambon P. A Decade of Molecular Biology of Retinoic Acid Receptors. FASEB J. 1996;10:940–954. doi: 10.1096/fasebj.10.9.8801176. PubMed DOI
Kam R.K.T., Deng Y., Chen Y., Zhao H. Retinoic Acid Synthesis and Functions in Early Embryonic Development. Cell Biosci. 2012;2:11. doi: 10.1186/2045-3701-2-11. PubMed DOI PMC
Das B.C., Thapa P., Karki R., Das S., Mahapatra S., Liu T.-C., Torregroza I., Wallace D.P., Kambhampati S., Van Veldhuizen P., et al. Retinoic Acid Signaling Pathways in Development and Diseases. Bioorg. Med. Chem. 2014;22:673–683. doi: 10.1016/j.bmc.2013.11.025. PubMed DOI PMC
Eroglu A., Hruszkewycz D.P., Dela Sena C., Narayanasamy S., Riedl K.M., Kopec R.E., Schwartz S.J., Curley R.W., Harrison E.H. Naturally Occurring Eccentric Cleavage Products of Provitamin A β-Carotene Function as Antagonists of Retinoic Acid Receptors. J. Biol. Chem. 2012;287:15886–15895. doi: 10.1074/jbc.M111.325142. PubMed DOI PMC
Morriss-Kay G.M., Wardt S.J. Retinoids and Mammalian Development. Int. Rev. Cytol. 1999;188:73–131. doi: 10.1016/s0074-7696(08)61566-1. PubMed DOI
Javůrek J., Sychrová E., Smutná M., Bittner M., Kohoutek J., Adamovský O., Nováková K., Smetanová S., Hilscherová K. Retinoid Compounds Associated with Water Blooms Dominated by Microcystis Species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI
Wu X., Jiang J., Hu J. Determination and Occurrence of Retinoids in a Eutrophic Lake (Taihu Lake, China): Cyanobacteria Blooms Produce Teratogenic Retinal. Environ. Sci. Technol. 2013;47:807–814. doi: 10.1021/es303582u. PubMed DOI
Wu X., Jiang J., Wan Y., Giesy J.P., Hu J. Cyanobacteria Blooms Produce Teratogenic Retinoic Acids. Proc. Natl. Acad. Sci. USA. 2012;109:9477–9482. doi: 10.1073/pnas.1200062109. PubMed DOI PMC
Sehnal L., Procházková T., Smutná M., Kohoutek J., Lepšová-Skácelová O., Hilscherová K. Widespread Occurrence of Retinoids in Water Bodies Associated with Cyanobacterial Blooms Dominated by Diverse Species. Water Res. 2019;156:136–147. doi: 10.1016/j.watres.2019.03.009. PubMed DOI
Jonas A., Scholz S., Fetter E., Sychrova E., Novakova K., Ortmann J., Benisek M., Adamovsky O., Giesy J.P., Hilscherova K. Endocrine, Teratogenic and Neurotoxic Effects of Cyanobacteria Detected by Cellular in Vitro and Zebrafish Embryos Assays. Chemosphere. 2015;120:321–327. doi: 10.1016/j.chemosphere.2014.07.074. PubMed DOI
Pipal M., Priebojova J., Koci T., Blahova L., Smutna M., Hilscherova K. Field Cyanobacterial Blooms Producing Retinoid Compounds Cause Teratogenicity in Zebrafish Embryos. Chemosphere. 2020;241:125061. doi: 10.1016/j.chemosphere.2019.125061. PubMed DOI
Jonas A., Buranova V., Scholz S., Fetter E., Novakova K., Kohoutek J., Hilscherova K. Retinoid-like Activity and Teratogenic Effects of Cyanobacterial Exudates. Aquat. Toxicol. 2014;155:283–290. doi: 10.1016/j.aquatox.2014.06.022. PubMed DOI
Ruch S., Beyer P., Ernst H., Al-Babili S. Retinal Biosynthesis in Eubacteria: In Vitro Characterization of a Novel Carotenoid Oxygenase from Synechocystis Sp. PCC 6803. Mol. Microbiol. 2005;55:1015–1024. doi: 10.1111/j.1365-2958.2004.04460.x. PubMed DOI
Scherzinger D., Ruch S., Kloer D.P., Wilde A., Al-Babili S. Retinal Is Formed from Apo-Carotenoids in Nostoc Sp. PCC7120: In Vitro Characterization of an Apo-Carotenoid Oxygenase. Biochem. J. 2006;398:361–369. doi: 10.1042/BJ20060592. PubMed DOI PMC
Cui H., Wang Y., Qin S. Genomewide Analysis of Carotenoid Cleavage Dioxygenases in Unicellular and Filamentous Cyanobacteria. Comp. Funct. Genom. 2012;2012:164690. doi: 10.1155/2012/164690. PubMed DOI PMC
Miles J.A., Machattou P., Nevin-Jones D., Webb M.E., Millard A., Scanlan D.J., Taylor P.C. Identification of a Cyanobacterial Aldehyde Dehydrogenase That Produces Retinoic Acid in Vitro. Biochem. Biophys. Res. Commun. 2019;510:27–34. doi: 10.1016/j.bbrc.2018.12.171. PubMed DOI
Mordi R.C., Ademosun O.T., Ajanaku C.O., Olanrewaju I.O., Walton J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules. 2020;25:1038. doi: 10.3390/molecules25051038. PubMed DOI PMC
Pípal M., Novák J., Rafajová A., Smutná M., Hilscherová K. Teratogenicity of Retinoids Detected in Surface Waters in Zebrafish Embryos and Its Predictability by in Vitro Assays. Aquat. Toxicol. 2022;246:106151. doi: 10.1016/j.aquatox.2022.106151. PubMed DOI
Priebojová J., Hilscherová K., Procházková T., Sychrová E., Smutná M. Intracellular and Extracellular Retinoid-like Activity of Widespread Cyanobacterial Species. Ecotoxicol. Environ. Saf. 2018;150:312–319. doi: 10.1016/j.ecoenv.2017.12.048. PubMed DOI
Hong S.H., Ngo H.P.T., Nam H.K., Kim K.R., Kang L.W., Oh D.K. Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus Cereus. Appl. Environ. Microbiol. 2016;82:3940. doi: 10.1128/AEM.00848-16. PubMed DOI PMC
Trautmann D., Beyer P., Al-Babili S. The ORF Slr0091 of Synechocystis Sp. PCC6803 Encodes a High-Light Induced Aldehyde Dehydrogenase Converting Apocarotenals and Alkanals. FEBS J. 2013;280:3685–3696. doi: 10.1111/febs.12361. PubMed DOI
Mordi R.C., Walton J.C. Identification of Products from Canthaxanthin Oxidation. Food Chem. 2016;197:836–840. doi: 10.1016/j.foodchem.2015.11.053. PubMed DOI
Alder A., Bigler P., Werck-Reichhart D., Al-Babili S. In Vitro Characterization of Synechocystis Cyp120a1 Revealed the First Nonanimal Retinoic Acid Hydroxylase. FEBS J. 2009;276:5416–5431. doi: 10.1111/j.1742-4658.2009.07224.x. PubMed DOI
Salgado P., Melin V., Contreras D., Moreno Y., Mansilla H.D. Fenton Reaction Driven by Iron Ligands. J. Chil. Chem. Soc. 2013;58:2096–2101. doi: 10.4067/S0717-97072013000400043. DOI
Tadolini B., Cabrini L. On the Mechanism of OH. Scavenger Action. Biochem. J. 1988;253:931–932. doi: 10.1042/bj2530931. PubMed DOI PMC
Yoshimura Y., Matsuzaki Y., Watanabe T., Uchiyama K., Ohsawa K., Imaeda K. Effects of Buffer Sofutions and Chelators on the Generation of Hydroxyl Radical and the Lipid Peroxidation in the Fenton Reaction System. J. Clin. Biochem. Nutr. 1992;13:147–154. doi: 10.3164/jcbn.13.147. DOI
Ahrazem O., Gómez-Gómez L., Rodrigo M.J., Avalos J., Limón M.C. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int. J. Mol. Sci. 2016;17:1781. doi: 10.3390/ijms17111781. PubMed DOI PMC
Ribeiro D., Sousa A., Nicola P., Ferreira de Oliveira J.M.P., Rufino A.T., Silva M., Freitas M., Carvalho F., Fernandes E. β-Carotene and Its Physiological Metabolites: Effects on Oxidative Status Regulation and Genotoxicity in in Vitro Models. Food Chem. Toxicol. 2020;141:111392. doi: 10.1016/j.fct.2020.111392. PubMed DOI
Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylidès C., Havaux M. Carotenoid Oxidation Products Are Stress Signals That Mediate Gene Responses to Singlet Oxygen in Plants. Proc. Natl. Acad. Sci. USA. 2012;109:5535–5540. doi: 10.1073/pnas.1115982109. PubMed DOI PMC
Schlösser U.G. SAG - Sammlung von Algenkulturen at the University of Göttingen Catalogue of Strains 1994. Bot. Acta. 1994;107:113–186. doi: 10.1111/j.1438-8677.1994.tb00784.x. DOI
Stein-Taylor J.R. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Camb. Univ. Press. 1973:460.
Moosová Z., Šindlerová L., Ambrůzová B., Ambrožová G., Vašíček O., Velki M., Babica P., Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins. 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC
Morin N., Vallaeys T., Hendrickx L., Natalie L., Wilmotte A. An Efficient DNA Isolation Protocol for Filamentous Cyanobacteria of the Genus Arthrospira. J. Microbiol. Methods. 2010;80:148–154. doi: 10.1016/j.mimet.2009.11.012. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Schirrmeister B.E., Antonelli A., Bagheri H.C. The Origin of Multicellularity in Cyanobacteria. BMC Evol. Biol. 2011;11:1–21. doi: 10.1186/1471-2148-11-45. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Jones D.T., Taylor W.R., Thornton J.M. The Rapid Generation of Mutation Data Matrices from Protein Sequences. Bioinformatics. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Letunic I., Bork P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Masuda K., Tanaka Y., Kanehisa M., Ninomiya T., Inoue A., Higuma H., Kawashima C., Nakanishi M., Okamoto K., Akiyoshi J. Natural Reduced Water Suppressed Anxiety and Protected the Heightened Oxidative Stress in Rats. Neuropsychiatr. Dis. Treat. 2017;13:2357–2362. doi: 10.2147/NDT.S138289. PubMed DOI PMC
Blough N.V., Zepp R.G. Active Oxygen in Chemistry. Springer; Dordrecht, The Netherlands: 1995. Reactive Oxygen Species in Natural Waters; pp. 280–333.
Primo O., Rueda A., Rivero M.J., Ortiz I. An Integrated Process, Fenton Reaction−Ultrafiltration, for the Treatment of Landfill Leachate: Pilot Plant Operation and Analysis. Ind. Eng. Chem. Res. 2008;47:946–952. doi: 10.1021/ie071111a. DOI
Villeneuve D.L., Blankenship A.L., Giesy J.P. Derivation and Application of Relative Potency Estimates Based on in Vitro Bioassay Results. Environ. Toxicol. Chem. 2000;19:2835–2843. doi: 10.1002/etc.5620191131. DOI
Apprill A., Mcnally S., Parsons R., Weber L. Minor Revision to V4 Region SSU RRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. Aquat. Microb. Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pẽa A.G., Goodrich J.K., Gordon J.I., et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Stoeck T., Bass D., Nebel M., Christen R., Jones M.D.M., Breiner H.W., Richards T.A. Multiple Marker Parallel Tag Environmental DNA Sequencing Reveals a Highly Complex Eukaryotic Community in Marine Anoxic Water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinforma. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC