The Origin of Teratogenic Retinoids in Cyanobacteria

. 2022 Sep 15 ; 14 (9) : . [epub] 20220915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36136574

Although information about the occurrence and distribution of retinoids in the environment is scarce, cyanobacterial water blooms have been identified as a significant source of these small molecules. Despite the confirmed presence of retinoids in the freshwater blooms dominated by cyanobacteria and their described teratogenic effects, reliable identification of retinoid producers and the mechanism of their biosynthesis is missing. In this study, the cultures of several taxonomically diverse species of axenic cyanobacteria were confirmed as significant producers of retinoid-like compounds. The consequent bioinformatic analysis suggested that the enzymatic background required for the biosynthesis of all-trans retinoic acid from retinal is not present across phylum Cyanobacteria. However, we demonstrated that retinal conversion into other retinoids can be mediated non-enzymatically by free radical oxidation, which leads to the production of retinoids widely detected in cyanobacteria and environmental water blooms, such as all-trans retinoic acid or all-trans 5,6epoxy retinoic acid. Importantly, the production of these metabolites by cyanobacteria in association with the mass development of water blooms can lead to adverse impacts in aquatic ecosystems regarding the described teratogenicity of retinoids. Moreover, our finding that retinal can be non-enzymatically converted into more bioactive retinoids, also in water, and out of the cells, increases the environmental significance of this process.

Zobrazit více v PubMed

Gutierrez-Mazariegos J., Nadendla E.K., Lima D., Pierzchalski K., Jones J.W., Kane M., Nishikawa J.-I., Hiromori Y., Nakanishi T., Santos M.M., et al. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding. Endocrinology. 2014;155:4275–4286. doi: 10.1210/en.2014-1181. PubMed DOI PMC

Schubert M., Gibert Y. Retinoids in Embryonic Development. Biomolecules. 2020;10:1278. doi: 10.3390/biom10091278. PubMed DOI PMC

Chambon P. A Decade of Molecular Biology of Retinoic Acid Receptors. FASEB J. 1996;10:940–954. doi: 10.1096/fasebj.10.9.8801176. PubMed DOI

Kam R.K.T., Deng Y., Chen Y., Zhao H. Retinoic Acid Synthesis and Functions in Early Embryonic Development. Cell Biosci. 2012;2:11. doi: 10.1186/2045-3701-2-11. PubMed DOI PMC

Das B.C., Thapa P., Karki R., Das S., Mahapatra S., Liu T.-C., Torregroza I., Wallace D.P., Kambhampati S., Van Veldhuizen P., et al. Retinoic Acid Signaling Pathways in Development and Diseases. Bioorg. Med. Chem. 2014;22:673–683. doi: 10.1016/j.bmc.2013.11.025. PubMed DOI PMC

Eroglu A., Hruszkewycz D.P., Dela Sena C., Narayanasamy S., Riedl K.M., Kopec R.E., Schwartz S.J., Curley R.W., Harrison E.H. Naturally Occurring Eccentric Cleavage Products of Provitamin A β-Carotene Function as Antagonists of Retinoic Acid Receptors. J. Biol. Chem. 2012;287:15886–15895. doi: 10.1074/jbc.M111.325142. PubMed DOI PMC

Morriss-Kay G.M., Wardt S.J. Retinoids and Mammalian Development. Int. Rev. Cytol. 1999;188:73–131. doi: 10.1016/s0074-7696(08)61566-1. PubMed DOI

Javůrek J., Sychrová E., Smutná M., Bittner M., Kohoutek J., Adamovský O., Nováková K., Smetanová S., Hilscherová K. Retinoid Compounds Associated with Water Blooms Dominated by Microcystis Species. Harmful Algae. 2015;47:116–125. doi: 10.1016/j.hal.2015.06.006. DOI

Wu X., Jiang J., Hu J. Determination and Occurrence of Retinoids in a Eutrophic Lake (Taihu Lake, China): Cyanobacteria Blooms Produce Teratogenic Retinal. Environ. Sci. Technol. 2013;47:807–814. doi: 10.1021/es303582u. PubMed DOI

Wu X., Jiang J., Wan Y., Giesy J.P., Hu J. Cyanobacteria Blooms Produce Teratogenic Retinoic Acids. Proc. Natl. Acad. Sci. USA. 2012;109:9477–9482. doi: 10.1073/pnas.1200062109. PubMed DOI PMC

Sehnal L., Procházková T., Smutná M., Kohoutek J., Lepšová-Skácelová O., Hilscherová K. Widespread Occurrence of Retinoids in Water Bodies Associated with Cyanobacterial Blooms Dominated by Diverse Species. Water Res. 2019;156:136–147. doi: 10.1016/j.watres.2019.03.009. PubMed DOI

Jonas A., Scholz S., Fetter E., Sychrova E., Novakova K., Ortmann J., Benisek M., Adamovsky O., Giesy J.P., Hilscherova K. Endocrine, Teratogenic and Neurotoxic Effects of Cyanobacteria Detected by Cellular in Vitro and Zebrafish Embryos Assays. Chemosphere. 2015;120:321–327. doi: 10.1016/j.chemosphere.2014.07.074. PubMed DOI

Pipal M., Priebojova J., Koci T., Blahova L., Smutna M., Hilscherova K. Field Cyanobacterial Blooms Producing Retinoid Compounds Cause Teratogenicity in Zebrafish Embryos. Chemosphere. 2020;241:125061. doi: 10.1016/j.chemosphere.2019.125061. PubMed DOI

Jonas A., Buranova V., Scholz S., Fetter E., Novakova K., Kohoutek J., Hilscherova K. Retinoid-like Activity and Teratogenic Effects of Cyanobacterial Exudates. Aquat. Toxicol. 2014;155:283–290. doi: 10.1016/j.aquatox.2014.06.022. PubMed DOI

Ruch S., Beyer P., Ernst H., Al-Babili S. Retinal Biosynthesis in Eubacteria: In Vitro Characterization of a Novel Carotenoid Oxygenase from Synechocystis Sp. PCC 6803. Mol. Microbiol. 2005;55:1015–1024. doi: 10.1111/j.1365-2958.2004.04460.x. PubMed DOI

Scherzinger D., Ruch S., Kloer D.P., Wilde A., Al-Babili S. Retinal Is Formed from Apo-Carotenoids in Nostoc Sp. PCC7120: In Vitro Characterization of an Apo-Carotenoid Oxygenase. Biochem. J. 2006;398:361–369. doi: 10.1042/BJ20060592. PubMed DOI PMC

Cui H., Wang Y., Qin S. Genomewide Analysis of Carotenoid Cleavage Dioxygenases in Unicellular and Filamentous Cyanobacteria. Comp. Funct. Genom. 2012;2012:164690. doi: 10.1155/2012/164690. PubMed DOI PMC

Miles J.A., Machattou P., Nevin-Jones D., Webb M.E., Millard A., Scanlan D.J., Taylor P.C. Identification of a Cyanobacterial Aldehyde Dehydrogenase That Produces Retinoic Acid in Vitro. Biochem. Biophys. Res. Commun. 2019;510:27–34. doi: 10.1016/j.bbrc.2018.12.171. PubMed DOI

Mordi R.C., Ademosun O.T., Ajanaku C.O., Olanrewaju I.O., Walton J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules. 2020;25:1038. doi: 10.3390/molecules25051038. PubMed DOI PMC

Pípal M., Novák J., Rafajová A., Smutná M., Hilscherová K. Teratogenicity of Retinoids Detected in Surface Waters in Zebrafish Embryos and Its Predictability by in Vitro Assays. Aquat. Toxicol. 2022;246:106151. doi: 10.1016/j.aquatox.2022.106151. PubMed DOI

Priebojová J., Hilscherová K., Procházková T., Sychrová E., Smutná M. Intracellular and Extracellular Retinoid-like Activity of Widespread Cyanobacterial Species. Ecotoxicol. Environ. Saf. 2018;150:312–319. doi: 10.1016/j.ecoenv.2017.12.048. PubMed DOI

Hong S.H., Ngo H.P.T., Nam H.K., Kim K.R., Kang L.W., Oh D.K. Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus Cereus. Appl. Environ. Microbiol. 2016;82:3940. doi: 10.1128/AEM.00848-16. PubMed DOI PMC

Trautmann D., Beyer P., Al-Babili S. The ORF Slr0091 of Synechocystis Sp. PCC6803 Encodes a High-Light Induced Aldehyde Dehydrogenase Converting Apocarotenals and Alkanals. FEBS J. 2013;280:3685–3696. doi: 10.1111/febs.12361. PubMed DOI

Mordi R.C., Walton J.C. Identification of Products from Canthaxanthin Oxidation. Food Chem. 2016;197:836–840. doi: 10.1016/j.foodchem.2015.11.053. PubMed DOI

Alder A., Bigler P., Werck-Reichhart D., Al-Babili S. In Vitro Characterization of Synechocystis Cyp120a1 Revealed the First Nonanimal Retinoic Acid Hydroxylase. FEBS J. 2009;276:5416–5431. doi: 10.1111/j.1742-4658.2009.07224.x. PubMed DOI

Salgado P., Melin V., Contreras D., Moreno Y., Mansilla H.D. Fenton Reaction Driven by Iron Ligands. J. Chil. Chem. Soc. 2013;58:2096–2101. doi: 10.4067/S0717-97072013000400043. DOI

Tadolini B., Cabrini L. On the Mechanism of OH. Scavenger Action. Biochem. J. 1988;253:931–932. doi: 10.1042/bj2530931. PubMed DOI PMC

Yoshimura Y., Matsuzaki Y., Watanabe T., Uchiyama K., Ohsawa K., Imaeda K. Effects of Buffer Sofutions and Chelators on the Generation of Hydroxyl Radical and the Lipid Peroxidation in the Fenton Reaction System. J. Clin. Biochem. Nutr. 1992;13:147–154. doi: 10.3164/jcbn.13.147. DOI

Ahrazem O., Gómez-Gómez L., Rodrigo M.J., Avalos J., Limón M.C. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int. J. Mol. Sci. 2016;17:1781. doi: 10.3390/ijms17111781. PubMed DOI PMC

Ribeiro D., Sousa A., Nicola P., Ferreira de Oliveira J.M.P., Rufino A.T., Silva M., Freitas M., Carvalho F., Fernandes E. β-Carotene and Its Physiological Metabolites: Effects on Oxidative Status Regulation and Genotoxicity in in Vitro Models. Food Chem. Toxicol. 2020;141:111392. doi: 10.1016/j.fct.2020.111392. PubMed DOI

Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylidès C., Havaux M. Carotenoid Oxidation Products Are Stress Signals That Mediate Gene Responses to Singlet Oxygen in Plants. Proc. Natl. Acad. Sci. USA. 2012;109:5535–5540. doi: 10.1073/pnas.1115982109. PubMed DOI PMC

Schlösser U.G. SAG - Sammlung von Algenkulturen at the University of Göttingen Catalogue of Strains 1994. Bot. Acta. 1994;107:113–186. doi: 10.1111/j.1438-8677.1994.tb00784.x. DOI

Stein-Taylor J.R. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Camb. Univ. Press. 1973:460.

Moosová Z., Šindlerová L., Ambrůzová B., Ambrožová G., Vašíček O., Velki M., Babica P., Kubala L. Lipopolysaccharides from Microcystis Cyanobacteria-Dominated Water Bloom and from Laboratory Cultures Trigger Human Immune Innate Response. Toxins. 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC

Morin N., Vallaeys T., Hendrickx L., Natalie L., Wilmotte A. An Efficient DNA Isolation Protocol for Filamentous Cyanobacteria of the Genus Arthrospira. J. Microbiol. Methods. 2010;80:148–154. doi: 10.1016/j.mimet.2009.11.012. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Schirrmeister B.E., Antonelli A., Bagheri H.C. The Origin of Multicellularity in Cyanobacteria. BMC Evol. Biol. 2011;11:1–21. doi: 10.1186/1471-2148-11-45. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Jones D.T., Taylor W.R., Thornton J.M. The Rapid Generation of Mutation Data Matrices from Protein Sequences. Bioinformatics. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI

Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI

Letunic I., Bork P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Masuda K., Tanaka Y., Kanehisa M., Ninomiya T., Inoue A., Higuma H., Kawashima C., Nakanishi M., Okamoto K., Akiyoshi J. Natural Reduced Water Suppressed Anxiety and Protected the Heightened Oxidative Stress in Rats. Neuropsychiatr. Dis. Treat. 2017;13:2357–2362. doi: 10.2147/NDT.S138289. PubMed DOI PMC

Blough N.V., Zepp R.G. Active Oxygen in Chemistry. Springer; Dordrecht, The Netherlands: 1995. Reactive Oxygen Species in Natural Waters; pp. 280–333.

Primo O., Rueda A., Rivero M.J., Ortiz I. An Integrated Process, Fenton Reaction−Ultrafiltration, for the Treatment of Landfill Leachate: Pilot Plant Operation and Analysis. Ind. Eng. Chem. Res. 2008;47:946–952. doi: 10.1021/ie071111a. DOI

Villeneuve D.L., Blankenship A.L., Giesy J.P. Derivation and Application of Relative Potency Estimates Based on in Vitro Bioassay Results. Environ. Toxicol. Chem. 2000;19:2835–2843. doi: 10.1002/etc.5620191131. DOI

Apprill A., Mcnally S., Parsons R., Weber L. Minor Revision to V4 Region SSU RRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton. Aquat. Microb. Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pẽa A.G., Goodrich J.K., Gordon J.I., et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Stoeck T., Bass D., Nebel M., Christen R., Jones M.D.M., Breiner H.W., Richards T.A. Multiple Marker Parallel Tag Environmental DNA Sequencing Reveals a Highly Complex Eukaryotic Community in Marine Anoxic Water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinforma. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...