LncRNA Profiling Reveals That the Deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 Is Associated with Higher-Risk Myelodysplastic Syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-31398A
Agentura Pro Zdravotnický Výzkum České Republiky
20-19162S
Grantová Agentura České Republiky
00023736
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32977510
PubMed Central
PMC7598221
DOI
10.3390/cancers12102726
PII: cancers12102726
Knihovny.cz E-zdroje
- Klíčová slova
- coexression network, lncRNA, myelodysplastic syndrome, outcome, pathogenesis, progression,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder with an incompletely known pathogenesis. Long noncoding RNAs (lncRNAs) play multiple roles in hematopoiesis and represent a new class of biomarkers and therapeutic targets, but information on their roles in MDS is limited. AIMS: here, we aimed to characterize lncRNAs deregulated in MDS that may function in disease pathogenesis. In particular, we focused on the identification of lncRNAs that could serve as novel potential biomarkers of adverse outcomes in MDS. METHODS: we performed microarray expression profiling of lncRNAs and protein-coding genes (PCGs) in the CD34+ bone marrow cells of MDS patients. Expression profiles were analyzed in relation to different aspects of the disease (i.e., diagnosis, disease subtypes, cytogenetic and mutational aberrations, and risk of progression). LncRNA-PCG networks were constructed to link deregulated lncRNAs with regulatory mechanisms associated with MDS. RESULTS: we found several lncRNAs strongly associated with disease pathogenesis (e.g., H19, WT1-AS, TCL6, LEF1-AS1, EPB41L4A-AS1, PVT1, GAS5, and ZFAS1). Of these, downregulation of LEF1-AS1 and TCL6 and upregulation of H19 and WT1-AS were associated with adverse outcomes in MDS patients. Multivariate analysis revealed that the predominant variables predictive of survival are blast count, H19 level, and TP53 mutation. Coexpression network data suggested that prognosis-related lncRNAs are predominantly related to cell adhesion and differentiation processes (H19 and WT1-AS) and mechanisms such as chromatin modification, cytokine response, and cell proliferation and death (LEF1-AS1 and TCL6). In addition, we observed that transcriptional regulation in the H19/IGF2 region is disrupted in higher-risk MDS, and discordant expression in this locus is associated with worse outcomes. CONCLUSIONS: we identified specific lncRNAs contributing to MDS pathogenesis and proposed cellular processes associated with these transcripts. Of the lncRNAs associated with patient prognosis, the level of H19 transcript might serve as a robust marker comparable to the clinical variables currently used for patient stratification.
1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Department of Computer Science Czech Technical University 121 35 Prague Czech Republic
Faculty of Science Charles University 128 00 Prague Czech Republic
General University Hospital 128 08 Prague Czech Republic
Institute of Hematology and Blood Transfusion U Nemocnice 1 128 20 Prague 2 Czech Republic
Zobrazit více v PubMed
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Greenberg P.L., Tuechler H., Schanz J., Sanz G., Garcia-Manero G., Solé F., Bennett J.M., Bowen D., Fenaux P., Dreyfus F., et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120:2454–2465. doi: 10.1182/blood-2012-03-420489. PubMed DOI PMC
Scott L.J. Azacitidine: A Review in Myelodysplastic Syndromes and Acute Myeloid Leukaemia. Drugs. 2016;76:889–900. doi: 10.1007/s40265-016-0585-0. PubMed DOI
Liu K., Beck D., Thoms J.A.I., Liu L., Zhao W., Pimanda J.E., Zhou X. Annotating Function to Differentially Expressed LincRNAs in Myelodysplastic Syndrome using a Network-Based Method. Bioinformatics. 2017;33:2622–2630. doi: 10.1093/bioinformatics/btx280. PubMed DOI PMC
Yao C., Chen C., Huang H., Hou H., Lin C., Tseng M., Kao C., Lu T., Chou W., Tien H. A 4-lncRNA Scoring System for Prognostication of Adult Myelodysplastic Syndromes. Blood Adv. 2017;1:1505–1516. doi: 10.1182/bloodadvances.2017008284. PubMed DOI PMC
Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., et al. The GENCODE V7 Catalog of Human Long Noncoding RNAs: Analysis of their Gene Structure, Evolution, and Expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC
Xie F., Xiao P., Chen D., Xu L., Zhang B. miRDeepFinder: A miRNA Analysis Tool for Deep Sequencing of Plant Small RNAs. Plant Mol. Biol. 2012;80:75–84. doi: 10.1007/s11103-012-9885-2. PubMed DOI
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Heller G., Schmidt W.M., Ziegler B., Holzer S., Müllauer L., Bilban M., Zielinski C.C., Drach J., Zöchbauer-Müller S. Genome-Wide Transcriptional Response to 5-Aza-2’-Deoxycytidine and Trichostatin a in Multiple Myeloma Cells. Cancer Res. 2008;68:44–54. doi: 10.1158/0008-5472.CAN-07-2531. PubMed DOI
Nuytten M., Beke L., Van Eynde A., Ceulemans H., Beullens M., Van Hummelen P., Fuks F., Bollen M. The Transcriptional Repressor NIPP1 is an Essential Player in EZH2-Mediated Gene Silencing. Oncogene. 2008;27:1449–1460. doi: 10.1038/sj.onc.1210774. PubMed DOI
Graessmann M., Berg B., Fuchs B., Klein A., Graessmann A. Chemotherapy Resistance of Mouse WAP-SVT/T Breast Cancer Cells is Mediated by Osteopontin, Inhibiting Apoptosis Downstream of Caspase-3. Oncogene. 2007;26:2840–2850. doi: 10.1038/sj.onc.1210096. PubMed DOI
Papaemmanuil E., Gerstung M., Malcovati L., Tauro S., Gundem G., Van Loo P., Yoon C.J., Ellis P., Wedge D.C., Pellagatti A., et al. Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes. Blood. 2013;122:3616–3627. doi: 10.1182/blood-2013-08-518886. PubMed DOI PMC
Dostalova Merkerova M., Krejcik Z., Votavova H., Belickova M., Vasikova A., Cermak J. Distinctive microRNA Expression Profiles in CD34+ Bone Marrow Cells from Patients with Myelodysplastic Syndrome. Eur. J. Hum. Genet. 2011;19:313–319. doi: 10.1038/ejhg.2010.209. PubMed DOI PMC
Votavova H., Grmanova M., Dostalova Merkerova M., Belickova M., Vasikova A., Neuwirtova R., Cermak J. Differential Expression of microRNAs in CD34+ Cells of 5q- Syndrome. J. Hematol. Oncol. 2011;4:1. doi: 10.1186/1756-8722-4-1. PubMed DOI PMC
Padron E., Garcia-Manero G., Patnaik M.M., Itzykson R., Lasho T., Nazha A., Rampal R.K., Sanchez M.E., Jabbour E., Al Ali N.H., et al. An International Data Set for CMML Validates Prognostic Scoring Systems and Demonstrates a Need for Novel Prognostication Strategies. Blood Cancer J. 2015;5:e333. doi: 10.1038/bcj.2015.53. PubMed DOI PMC
Ishiguro H., Furukawa Y., Daigo Y., Miyoshi Y., Nagasawa Y., Nishiwaki T., Kawasoe T., Fujita M., Satoh S., Miwa N., et al. Isolation and Characterization of Human NBL4, a Gene Involved in the Beta-Catenin/Tcf Signaling Pathway. Jpn. J. Cancer Res. 2000;91:597–603. doi: 10.1111/j.1349-7006.2000.tb00987.x. PubMed DOI PMC
Boloix A., Masanas M., Jiménez C., Antonelli R., Soriano A., Roma J., Sánchez de Toledo J., Gallego S., Segura M.F. Long Non-Coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer. Front. Oncol. 2019;9:1173. doi: 10.3389/fonc.2019.01173. PubMed DOI PMC
Hruba M., Vesela J., Votavova H., Dostalova Merkerova M., Kundrat D., Szikszai K., Lauermanova M., Zemanova Z., Jonasova A., Cermak J., et al. RUNX1 Mutation Accompanied with Dysregulated Cellular Senescence in Lower-Risk Myelodysplastic Syndrome Patients is Associated with Disease Progression. Blood. 2019;134:4230. doi: 10.1182/blood-2019-131150. DOI
Cieslak A., Le Noir S., Trinquand A., Lhermitte L., Franchini D., Villarese P., Gon S., Bond J., Simonin M., Vanhille L., et al. RUNX1-Dependent RAG1 Deposition Instigates Human TCR-Δ Locus Rearrangement. J. Exp. Med. 2014;211:1821–1832. doi: 10.1084/jem.20132585. PubMed DOI PMC
Pellagatti A., Benner A., Mills K.I., Cazzola M., Giagounidis A., Perry J., Malcovati L., Della Porta M.G., Jädersten M., Verma A., et al. Identification of Gene Expression-Based Prognostic Markers in the Hematopoietic Stem Cells of Patients with Myelodysplastic Syndromes. J. Clin. Oncol. 2013;31:3557–3564. doi: 10.1200/JCO.2012.45.5626. PubMed DOI
Prall W.C., Czibere A., Grall F., Spentzos D., Steidl U., Giagounidis A.A.N., Kuendgen A., Otu H., Rong A., Libermann T.A., et al. Differential Gene Expression of Bone Marrow-Derived CD34+ Cells is Associated with Survival of Patients Suffering from Myelodysplastic Syndrome. Int. J. Hematol. 2009;89:173–187. doi: 10.1007/s12185-008-0242-9. PubMed DOI
Minetto P., Guolo F., Clavio M., De Astis E., Colombo N., Grasso R., Fugazza G., Sessarego M., Lemoli R.M., Gobbi M., et al. Combined Assessment of WT1 and BAALC Gene Expression at Diagnosis may Improve Leukemia-Free Survival Prediction in Patients with Myelodysplastic Syndromes. Leuk. Res. 2015;39:866–873. doi: 10.1016/j.leukres.2015.04.011. PubMed DOI
Zhang T., Zhou J., Zhang W., Lin J., Ma J., Wen X., Yuan Q., Li X., Xu Z., Qian J. H19 Overexpression Promotes Leukemogenesis and Predicts Unfavorable Prognosis in Acute Myeloid Leukemia. Clin. Epigenetics. 2018;10:47. doi: 10.1186/s13148-018-0486-z. PubMed DOI PMC
Nordin M., Bergman D., Halje M., Engström W., Ward A. Epigenetic Regulation of the Igf2/H19 Gene Cluster. Cell Prolif. 2014;47:189–199. doi: 10.1111/cpr.12106. PubMed DOI PMC
He D., Wang J., Zhang C., Shan B., Deng X., Li B., Zhou Y., Chen W., Hong J., Gao Y., et al. Down-Regulation of miR-675-5p Contributes to Tumor Progression and Development by Targeting Pro-Tumorigenic GPR55 in Non-Small Cell Lung Cancer. Mol. Cancer. 2015;14:73. doi: 10.1186/s12943-015-0342-0. PubMed DOI PMC
Vennin C., Spruyt N., Dahmani F., Julien S., Bertucci F., Finetti P., Chassat T., Bourette R.P., Le Bourhis X., Adriaenssens E. H19 Non Coding RNA-Derived miR-675 Enhances Tumorigenesis and Metastasis of Breast Cancer Cells by Downregulating C-Cbl and Cbl-B. Oncotarget. 2015;6:29209–29223. doi: 10.18632/oncotarget.4976. PubMed DOI PMC
Saitou M., Sugimoto J., Hatakeyama T., Russo G., Isobe M. Identification of the TCL6 Genes within the Breakpoint Cluster Region on Chromosome 14q32 in T-Cell Leukemia. Oncogene. 2000;19:2796–2802. doi: 10.1038/sj.onc.1203604. PubMed DOI
Su H., Sun T., Wang H., Shi G., Zhang H., Sun F., Ye D. Decreased TCL6 Expression is Associated with Poor Prognosis in Patients with Clear Cell Renal Cell Carcinoma. Oncotarget. 2017;8:5789–5799. doi: 10.18632/oncotarget.11011. PubMed DOI PMC
Nagasaki J., Aoyama Y., Hino M., Ido K., Ichihara H., Manabe M., Ohta T., Mugitani A. Wilms Tumor 1 (WT1) mRNA Expression Level at Diagnosis is a Significant Prognostic Marker in Elderly Patients with Myelodysplastic Syndrome. Acta Haematol. 2017;137:32–39. doi: 10.1159/000452732. PubMed DOI
Galimberti S., Ghio F., Guerrini F., Ciabatti E., Grassi S., Ferreri M.I., Petrini M. WT1 Expression Levels at Diagnosis could Predict Long-Term Time-to-Progression in Adult Patients Affected by Acute Myeloid Leukaemia and Myelodysplastic Syndromes. Br. J. Haematol. 2010;149:451–454. doi: 10.1111/j.1365-2141.2009.08063.x. PubMed DOI
Inoue K., Sugiyama H., Ogawa H., Nakagawa M., Yamagami T., Miwa H., Kita K., Hiraoka A., Masaoka T., Nasu K. WT1 as a New Prognostic Factor and a New Marker for the Detection of Minimal Residual Disease in Acute Leukemia. Blood. 1994;84:3071–3079. doi: 10.1182/blood.V84.9.3071.3071. PubMed DOI
Skokowa J., Cario G., Uenalan M., Schambach A., Germeshausen M., Battmer K., Zeidler C., Lehmann U., Eder M., Baum C., et al. LEF-1 is Crucial for Neutrophil Granulocytopoiesis and its Expression is Severely Reduced in Congenital Neutropenia. Nat. Med. 2006;12:1191–1197. doi: 10.1038/nm1474. PubMed DOI
Dallosso A.R., Hancock A.L., Malik S., Salpekar A., King-Underwood L., Pritchard-Jones K., Peters J., Moorwood K., Ward A., Malik K.T.A., et al. Alternately Spliced WT1 Antisense Transcripts Interact with WT1 Sense RNA and show Epigenetic and Splicing Defects in Cancer. RNA. 2007;13:2287–2299. doi: 10.1261/rna.562907. PubMed DOI PMC
Congrains-Castillo A., Niemann F.S., Santos Duarte A.S., Olalla-Saad S.T. LEF1-AS1, Long Non-Coding RNA, Inhibits Proliferation in Myeloid Malignancy. J. Cell. Mol. Med. 2019;23:3021–3025. doi: 10.1111/jcmm.14152. PubMed DOI PMC
Dysregulation of transposable elements and PIWI-interacting RNAs in myelodysplastic neoplasms