Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene SF3B1
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19162S
Grantová Agentura České Republiky
00023736
Ministerstvo Zdravotnictví Ceské Republiky
RVO 61388963
Ústav organické chemie a biochemie Akademie věd České republiky
PubMed
37408496
PubMed Central
PMC10701770
DOI
10.1002/1878-0261.13486
Knihovny.cz E-zdroje
- Klíčová slova
- SF3B1, ZEB1, circular RNA, myelodysplastic neoplasms, splicing,
- MeSH
- akutní myeloidní leukemie * MeSH
- fosfoproteiny genetika MeSH
- kruhová RNA genetika MeSH
- lidé MeSH
- mutace genetika MeSH
- myelodysplastické syndromy * genetika MeSH
- sestřihové faktory genetika MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoproteiny MeSH
- kruhová RNA MeSH
- sestřihové faktory MeSH
- SF3B1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.
1st Department of Medicine General University Hospital Prague Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Computer Science Czech Technical University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Department of Genomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Department of Proteomics Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center of St Anne's University Hospital Brno Czech Republic
Laboratory of Anemias Institute of Hematology and Blood Transfusion Prague Czech Republic
Zobrazit více v PubMed
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719. PubMed PMC
Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE, Nannya Y, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7). 10.1056/EVIDoa2200008 PubMed DOI
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–247. PubMed PMC
Boultwood J, Dolatshad H, Varanasi SS, Yip BH, Pellagatti A. The role of splicing factor mutations in the pathogenesis of the myelodysplastic syndromes. Adv Biol Regul. 2014;54(1):153–161. PubMed
Ramabadran R, Wang J, Guzman A, Cullen SM, Brunetti L, Gundry M, et al. Loss of de novo DNA methyltransferase DNMT3A impacts alternative splicing in hematopoietic stem cells. Blood. 2017;130(Suppl 1):1. PubMed
Lord AM, Clement K, Schneider RK, Marie M, Chen MC, Levine RL, et al. Loss of TET2 function in myelodysplastic syndrome results in intragenic hypermethylation and alterations in mRNA splicing. Blood. 2014;124(21):775.
Chen L, Tovar‐Corona JM, Urrutia AO. Increased levels of noisy splicing in cancers, but not for oncogene‐derived transcripts. Hum Mol Genet. 2011;20(22):4422–4429. PubMed PMC
Vicens Q, Westhof E. Biogenesis of circular RNAs. Cell. 2014;159(1):13–14. PubMed
Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103–111. PubMed
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–442. PubMed
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–388. PubMed PMC
Zhang M, Xin Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J Hematol Oncol. 2018;11(1):21. PubMed PMC
Wu W‐L, Li S, Zhao G‐J, Li N‐Y, Wang X‐Q. Identification of circular RNAs as novel biomarkers and potentially functional competing endogenous RNA network for myelodysplastic syndrome patients. Cancer Sci. 2021;112(5):1888–1898. PubMed PMC
Merkerova MD, Klema J, Kundrat D, Szikszai K, Krejcik Z, Hrustincova A, et al. Noncoding RNAs and their response predictive value in azacitidine‐treated patients with myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia‐related changes. Cancer Genomics Proteomics. 2022;19(2):205–228. PubMed PMC
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. PubMed
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia‐Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–2465. PubMed PMC
Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, et al. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cell. 2020;9(4):794. PubMed PMC
Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Dostalova Merkerova M, Krejcik Z, et al. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower‐risk MDS. Leukemia. 2022;36:1898–1906. 10.1038/s41375-022-01584-3 PubMed DOI PMC
Andrews S. FastQC – a quality control tool for high throughput sequence data. Babraham Bioinformatics; 2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long‐read RNA‐seq alignments with StringTie2. Genome Biol. 2019;20(1):278. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics. 2009;25:1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19:803–810. 10.1093/bib/bbx014 PubMed DOI
Zhang J, Chen S, Yang J, Zhao F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun. 2020;11(1):90. PubMed PMC
Humphreys DT, Fossat N, Demuth M, Tam PPL, Ho JWK. Ularcirc: visualization and enhanced analysis of circular RNAs via back and canonical forward splicing. Nucleic Acids Res. 2019;47(20):e123. PubMed PMC
Szikszai K, Krejcik Z, Klema J, Loudova N, Hrustincova A, Belickova M, et al. LncRNA profiling reveals that the deregulation of H19, WT1‐AS, TCL6, and LEF1‐AS1 is associated with higher‐risk myelodysplastic syndrome. Cancers (Basel). 2020;12(10):1–21. PubMed PMC
Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al. MiRTarBase 2020: updates to the experimentally validated microRNA‐target interaction database. Nucleic Acids Res. 2020;48(D1):D148–D154. PubMed PMC
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–W221. PubMed PMC
Soen B, Vandamme N, Berx G, Schwaller J, Van Vlierberghe P, Goossens S. ZEB proteins in leukemia: friends, foes, or friendly foes? Hemasphere. 2018;2(3):e43. PubMed PMC
Kotake Y, Sagane K, Owa T, Mimori‐Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(9):570–575. PubMed
Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, et al. Cancer‐associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7(1):1–12. PubMed PMC
Liberante FG, Lappin K, Barros EM, Vohhodina J, Grebien F, Savage KI, et al. Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1‐mutant myelodysplastic syndromes as a therapeutic vulnerability. Sci Rep. 2019;9(1):2678. PubMed PMC
Hsu J, Reilly A, Hayes BJ, Clough CA, Konnick EQ, Torok‐Storb B, et al. Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes. Blood. 2019;134(2):186–198. PubMed PMC
Brian Dalton W, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, et al. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest. 2019;129(11):4708–4723. PubMed PMC
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. Circinteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34–42. PubMed PMC
Ryšavý P, Kléma J, Merkerová MD. circGPA: circRNA functional annotation based on probability‐generating functions. BMC Bioinformatics. 2022;23(1):392. PubMed PMC
Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, et al. The output of protein‐coding genes shifts to circular RNAs when the pre‐mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940–954.e3. PubMed PMC
Lux S, Blätte TJ, Cocciardi S, Schwarz K, Döhner H, Döhner K, et al. Deregulated expression of circular RNAs in acute myeloid leukemia. Blood. 2018;132(Suppl 1):3894. PubMed PMC
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother. 2019;110:400–408. PubMed
Almotiri A, Alzahrani H, Menendez‐Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, et al. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest. 2021;131(1):e129115. PubMed PMC
Xu Y, Dong X, Ma B, Mu P, Kong X, Li D. Circ_0000228 promotes cervical cancer progression via regulating miR‐337‐3p/TGFBR1 Axis. Cell J. 2022;24(2):91–98. PubMed PMC
Liu S, Li B, Li Y, Song H. Circular RNA circ_0000228 promotes the malignancy of cervical cancer via microRNA‐195‐5p/ lysyl oxidase‐like protein 2 axis. Bioengineered. 2021;12(1):4397–4406. PubMed PMC
Pei X, Zhang Y, Wang X, Xue B, Sun M, Li H. Circular RNA circ‐ZEB1 acts as an oncogene in triple negative breast cancer via sponging miR‐448. Int J Biochem Cell Biol. 2020;126:105798. PubMed
Gong Y, Mao J, Wu D, Wang X, Li L, Zhu L, et al. Circ‐ZEB1.33 promotes the proliferation of human HCC by sponging miR‐200a‐3p and upregulating CDK6. Cancer Cell Int. 2018;18(1):116. PubMed PMC
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, et al. Circ‐ZEB1 promotes PIK3CA expression by silencing miR‐199a‐3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer. 2022;21(1):72. PubMed PMC
Jiang H, Yang L, Guo L, Cui N, Zhang G, Liu C, et al. Impaired mitophagy of nucleated erythroid cells leads to anemia in patients with myelodysplastic syndromes. Oxid Med Cell Longev. 2018;2018:6328051. PubMed PMC
Zhang Y, Wang M, Zang X, Mao Z, Chen Y, Mao F, et al. CircHN1 affects cell proliferation and migration in gastric cancer. J Clin Lab Anal. 2020;34(10):e23433. PubMed PMC
Catanzaro G, Besharat ZM, Carai A, Jäger N, Splendiani E, Colin C, et al. MiR‐1248: a new prognostic biomarker able to identify supratentorial hemispheric pediatric low‐grade gliomas patients associated with progression. Biomark Res. 2022;10(1):44. PubMed PMC
Du F, Guo T, Cao C. Restoration of upk1a‐as1 expression suppresses cell proliferation, migration, and invasion in esophageal squamous cell carcinoma cells partially by sponging microrna‐1248. Cancer Manag Res. 2020;12:2653–2662. PubMed PMC
Wang C, Wang B, Liang W, Zhou C, Lin W, Meng Z, et al. Hsa‐miR‐1248 suppressed the proliferation, invasion and migration of colorectal cancer cells via inhibiting PSMD10. BMC Cancer. 2022;22(1):922. PubMed PMC
Yang T, Li M, Li H, Shi P, Liu J, Chen M. Downregulation of circEPSTI1 represses the proliferation and invasion of non‐small cell lung cancer by inhibiting TRIM24 via miR‐1248 upregulation. Biochem Biophys Res Commun. 2020;530(1):348–354. PubMed