circGPAcorr: an integrative tool for functional annotation of circular RNAs using expression data
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV NU20-03-00412
Ministerstvo Zdravotnictví Ceské Republiky
AZV NU20-03-00412
Ministerstvo Zdravotnictví Ceské Republiky
AZV NU20-03-00412
Ministerstvo Zdravotnictví Ceské Republiky
AZV NU20-03-00412
Ministerstvo Zdravotnictví Ceské Republiky
SGS23/184/OHK3/3T/13
České Vysoké Učení Technické v Praze
PubMed
40751272
PubMed Central
PMC12317645
DOI
10.1186/s13040-025-00468-3
PII: 10.1186/s13040-025-00468-3
Knihovny.cz E-zdroje
- Klíčová slova
- CircRNA, Functional annotation, Gene expression, Generating polynomial,
- Publikační typ
- časopisecké články MeSH
Circular RNAs play a crucial role in cell development and serve as biomarkers in many diseases. Nevertheless, the function of many circular RNAs remains unknown. This function can be inferred from sponging and silencing interactions with micro RNAs and messenger RNAs. We recently proposed a network-based circRNA functional annotation tool, circGPA. However, validation data for RNA interactions are often sparse and predicted interactions contain many false positives. To address this issue, we propose an extended algorithm named circGPAcorr, which uses expression data to weight the interactions, resulting in more precise functional annotation. To assess the significance of the results, the p-value is calculated using reduction to circGPA, a generating-polynomial-based method. We show that the problem is #P-hard, and thus computationally difficult. The circGPAcorr algorithm is tested on publicly available myelodysplastic syndromes expression data, providing gene ontology annotations that align with the literature on myelodysplastic syndromes. At the same time, we demonstrate its performance in the circRNA-disease annotation task.
Zobrazit více v PubMed
Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci. 2013;14(8):16010–39. PubMed PMC
Oliver S. Guilt-by-association goes global. Nature. 2000;403(6770):601–2. PubMed
Ryšavý P, Kléma J, Merkerová MD. circGPA: circRNA functional annotation based on probability-generating functions. BMC Bioinformatics. 2022;23(1):392. PubMed PMC
Feller W. An introduction to probability theory and its applications, vol. 81. USA: John Wiley & Sons; 1991.
Ryšavý P, Kléma J, Merkerová MD. GPACDA - circRNA-Disease Association Prediction with Generating Polynomials. In: Rojas I, Ortuño F, Rojas F, Herrera LJ, Valenzuela O, editors. Bioinformatics and Biomedical Engineering. Cham: Springer Nature Switzerland; 2024. p. 33–48.
Skoufos G, Kakoulidis P, Tastsoglou S, Zacharopoulou E, Kotsira V, Miliotis M, et al. TarBase-v9. 0 extends experimentally supported miRNA–gene interactions to cell-types and virally encoded miRNAs. Nucleic Acids Res. 2024;52(D1):D304–10. PubMed PMC
Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460(7254):479–86. PubMed PMC
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141(1):129–41. PubMed PMC
Haecker I, Renne R. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit Rev Eukaryot Gene Expr. 2014;24(2):101–16. 10.1615/critreveukaryotgeneexpr.2014006367. PubMed PMC
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microrna target sites in mammalian mrnas. eLife. 2015;4: e05005. 10.7554/eLife.05005. PubMed PMC
Leclercq M, Diallo AB, Blanchette M. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Res. 2017;45(2):556–66. PubMed PMC
Pinzón N, Li B, Martinez L, Sergeeva A, Presumey J, Apparailly F, et al. Microrna target prediction programs predict many false positives. Genome Res. 2017;27(2):234–45. PubMed PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:1–13. PubMed PMC
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1). https://www.degruyterbrill.com/document/doi/10.2202/1544-6115.1128/html. PubMed DOI
Buratin A, Gaffo E, Dal Molin A, Bortoluzzi S. CircIMPACT: an R package to explore circular RNA impact on gene expression and pathways. Genes. 2021;12(7):1044. PubMed PMC
Burns JJ, Shealy BT, Greer MS, Hadish JA, McGowan MT, Biggs T, et al. Addressing noise in co-expression network construction. Brief Bioinform. 2022;23(1): bbab495. PubMed PMC
Cardenas J, Balaji U, Gu J. Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci Rep. 2020;10(1): 22165. PubMed PMC
Shi Z, Wang J, Zhang B. NetGestalt: integrating multidimensional omics data over biological networks. Nat Methods. 2013;10(7):597–8. PubMed PMC
Deng L, Lin W, Wang J, Zhang J. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features. BMC Bioinformatics. 2020;21:1–18. PubMed PMC
Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform. 2022;23(6): bbac364. PubMed
Lasantha D, Vidanagamachchi S, Nallaperuma S. Deep learning and ensemble deep learning for circRNA-RBP interaction prediction in the last decade: a review. Eng Appl Artif Intell. 2023;123:106352.
Li G, Yue Y, Liang C, Xiao Q, Ding P, Luo J. NCPCDA: network consistency projection for circRNA-disease association prediction. RSC Adv. 2019;9(57):33222–8. 10.1039/C9RA06133A. PubMed PMC
Yao B, and YS. lncRNA-disease association prediction based on optimizing measures of multi-graph regularized matrix factorization. Comput Methods Biomech Biomed Eng. 2025;0(0):1–16. PMID: 40114384. 10.1080/10255842.2025.2479854. PubMed
Zhao Q, Yang Y, Ren G, Ge E, Fan C. Integrating bipartite network projection and KATZ measure to identify novel circRNA-disease associations. IEEE Trans Nanobioscience. 2019;18(4):578–84. 10.1109/TNB.2019.2922214. PubMed
Lu C, Zeng M, Wu FX, Li M, Wang J. Improving circRNA–disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics. 2020;36(24):5656–64. 10.1093/bioinformatics/btaa1077. PubMed
Zhang HY, Wang L, You ZH, Hu L, Zhao BW, Li ZW, et al. iGRLCDA: identifying circRNA–disease association based on graph representation learning. Brief Bioinform. 2022;23(3): bbac083. 10.1093/bib/bbac083. PubMed
Deepthi K, Jereesh AS. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network. Gene. 2020;762:145040. 10.1016/j.gene.2020.145040. PubMed
Wu Q, Deng Z, Pan X, Shen HB, Choi KS, Wang S, et al. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for circRNA-disease association prediction. Brief Bioinform. 2022;23(5): bbac289. 10.1093/bib/bbac289. PubMed
Guo Y, Yi M. THGNCDA: circRNA–disease association prediction based on triple heterogeneous graph network. Brief Funct Genom. 2023:elad042. 10.1093/bfgp/elad042. PubMed
Liang S, Liu S, Song J, Lin Q, Zhao S, Li S, et al. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction. BMC Bioinformatics. 2023;24(1): 335. 10.1186/s12859-023-05441-7. PubMed PMC
Niu M, Wang C, Zhang Z, Zou Q. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation. BMC Biol. 2024;22(1):24. PubMed PMC
Lan W, Li C, Chen Q, Yu N, Pan Y, Zheng Y, et al. LGCDA: Predicting CircRNA-Disease Association Based on Fusion of Local and Global Features. IEEE/ACM Trans Comput Biol Bioinforma. 2024;21(5):1413–22. 10.1109/TCBB.2024.3387913. PubMed
Warden CD, Yuan YC, Wu X. Optimal calculation of RNA-Seq fold-change values. Int J Comput Bioinforma In Silico Model. 2013;2(6):285–92.
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34–42. 10.1080/15476286.2015.1128065. PubMed PMC
Trsova I, et al. Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene SF3B1. Mol Oncol. 2023;17(12):2565–83. 10.1002/1878-0261.13486. PubMed PMC
Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, et al. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 2020. 10.3390/cells9040794. PubMed PMC
Merkerová MD, Kléma J, Kundrát D, Szikszai K, Krejčík Z, Hruštincová A, et al. Noncoding RNAs and Their Response Predictive Value in Azacitidine-treated Patients With Myelodysplastic Syndrome and Acute Myeloid Leukemia With Myelodysplasia-related Changes. Cancer Genomics Proteomics. 2022;19(2):205–228. 10.21873/cgp.20315. PubMed PMC
Dunn OJ. Multiple Comparisons among Means. JASA. 1961;56(293)52–64.
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. JRSS Ser B. 1995;57(1)289–300.
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PLoS ONE. 2010;5(11):1–12. 10.1371/journal.pone.0013984. PubMed PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. 10.1101/gr.1239303. PubMed PMC
Marriott FHC. Barnard’s Monte Carlo Tests: How Many Simulations? J R Stat Soc Ser C Appl Stat. 1979;28(1):75–7. http://www.jstor.org/stable/2346816.
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. eBioMedicine. 2018;34:267–74. 10.1016/j.ebiom.2018.07.036. PubMed PMC
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7. 10.1038/leu.2013.336. PubMed PMC
Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly C. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res. 2022;51(D1):D1257–62. 10.1093/nar/gkac833. PubMed PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. 10.1038/75556. PubMed PMC
Yao D, Zhang L, Zheng M, Sun X, Lu Y, Liu P. Circ2disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep. 2018. 10.1038/s41598-018-29360-3. PubMed PMC
Fan C, Lei X, Tie J, Zhang Y, Wu FX, Pan Y. Circr2disease v2.0: an updated web server for experimentally validated circRNA–disease associations and its application. Genomics Proteomics Bioinforma. 2021;20(3):435–45. 10.1016/j.gpb.2021.10.002. PubMed PMC
Sun ZY, Yang CL, Huang LJ, Mo ZC, Zhang KN, Fan WH, et al. circRNADisease v2.0: an updated resource for high-quality experimentally supported circRNA-disease associations. Nucleic Acids Res. 2023;52(D1):D1193–200. 10.1093/nar/gkad949. PubMed PMC
Edgar R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. 10.1093/nar/30.1.207. PubMed PMC
Liu S, Wang Y, Duan L, Cui D, Deng K, Dong Z, et al. Whole transcriptome sequencing identifies a competitive endogenous RNA network that regulates the immunity of bladder cancer. Heliyon. 2024;10(8):e29344. 10.1016/j.heliyon.2024.e29344. PubMed PMC
Lorenzi L, Chiu HS, Avila Cobos F, Gross S, Volders PJ, Cannoodt R, et al. The RNA atlas expands the catalog of human non-coding RNAs. Nat Biotechnol. 2021;39(11):1453–65. 10.1038/s41587-021-00936-1. PubMed
Glažar P, Papavasileiou P, Rajewsky N. Circbase: a database for circular RNAs. RNA. 2014;20(11):1666–70. 10.1261/rna.043687.113. PubMed PMC
Bekker J, Davis J. Learning from positive and unlabeled data: a survey. Mach Learn. 2020;109(4):719–60. 10.1007/s10994-020-05877-5.
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst. 2021;32(1):4–24. 10.1109/TNNLS.2020.2978386. PubMed
Šourek G, Aschenbrenner V, Železný F, Schockaert S, Kuželka O. Lifted relational neural networks: efficient learning of latent relational structures. J Artif Intell Res. 2018;62:69–100.