Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient Outcome

. 2020 Mar 26 ; 9 (4) : . [epub] 20200326

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32224889

Grantová podpora
16-33617A Ministerstvo Zdravotnictví Ceské Republiky - International

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers. We performed small RNA-seq in paired samples of total plasma and plasma-derived extracellular vesicles (EVs) obtained from 42 patients and 17 healthy controls and analyzed the data with respect to the stage of the disease, patient survival, response to azacitidine, mutational status, and RNA editing. Significantly higher amounts of RNA material and a striking imbalance in RNA content between plasma and EVs (more than 400 significantly deregulated sncRNAs) were found in MDS patients compared to healthy controls. Moreover, the RNA content of EV cargo was more homogeneous than that of total plasma, and different RNAs were deregulated in these two types of material. Differential expression analyses identified that many hematopoiesis-related miRNAs (e.g., miR-34a, miR-125a, and miR-150) were significantly increased in MDS and that miRNAs clustered on 14q32 were specifically increased in early MDS. Only low numbers of circulating sncRNAs were significantly associated with somatic mutations in the SF3B1 or DNMT3A genes. Survival analysis defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p measured in EVs) as the most significantly associated with overall survival (HR = 5.866, p < 0.001). In total plasma, we identified five circulating miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) whose combined expression levels could predict the response to azacitidine treatment. In conclusion, our data demonstrate that circulating sncRNAs show specific patterns in MDS and that their expression changes during disease progression, providing a rationale for the potential clinical usefulness of circulating sncRNAs in MDS prognosis. However, monitoring sncRNA levels in total plasma or in the EV fraction does not reflect one another, instead, they seem to represent distinctive snapshots of the disease and the data should be interpreted circumspectly with respect to the type of material analyzed.

Zobrazit více v PubMed

Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI

Greenberg P.L., Tuechler H., Schanz J., Sanz G., Garcia-Manero G., Solé F., Bennett J.M., Bowen D., Fenaux P., Dreyfus F., et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120:2454–2465. doi: 10.1182/blood-2012-03-420489. PubMed DOI PMC

Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC

Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., Mitchell P.S., Bennett C.F., Pogosova-Agadjanyan E.L., Stirewalt D.L., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108:5003–5008. doi: 10.1073/pnas.1019055108. PubMed DOI PMC

Wang K., Zhang S., Weber J., Baxter D., Galas D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248–7259. doi: 10.1093/nar/gkq601. PubMed DOI PMC

Diehl P., Fricke A., Sander L., Stamm J., Bassler N., Htun N., Ziemann M., Helbing T., El-Osta A., Jowett J.B., et al. Microparticles: Major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res. 2012;93:633–644. doi: 10.1093/cvr/cvs007. PubMed DOI PMC

Hunter M.P., Ismail N., Zhang X., Aguda B.D., Lee E.J., Yu L., Xiao T., Schafer J., Lee M.L., Schmittgen T.D., et al. Detection of microRNA Expression in Human Peripheral Blood Microvesicles. PLoS ONE. 2008;3:e3694. doi: 10.1371/journal.pone.0003694. PubMed DOI PMC

Fonsato V., Collino F., Herrera M.B., Cavallari C., Deregibus M.C., Cisterna B., Bruno S., Romagnoli R., Salizzoni M., Tetta C., et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells. 2012;30:1985–1998. doi: 10.1002/stem.1161. PubMed DOI PMC

Umezu T., Ohyashiki K., Kuroda M., Ohyashiki J.H. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–2755. doi: 10.1038/onc.2012.295. PubMed DOI

Yuan A., Farber E.L., Rapoport A.L., Tejada D., Deniskin R., Akhmedov N.B., Farber D.B. Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles. PLoS ONE. 2009;4:e4722. doi: 10.1371/journal.pone.0004722. PubMed DOI PMC

Villarroya-Beltri C., Gutiérrez-Vázquez C., Sánchez-Cabo F., Pérez-Hernández D., Vázquez J., Martin-Cofreces N., Martinez-Herrera D.J., Pascual-Montano A., Mittelbrunn M., Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 2013;4:2980. doi: 10.1038/ncomms3980. PubMed DOI PMC

Temoche-Diaz M.M., Shurtleff M.J., Nottingham R.M., Yao J., Fadadu R.P., Lambowitz A.M., Schekman R. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife. 2019;8:e47544. doi: 10.7554/eLife.47544. PubMed DOI PMC

Bracken C.P., Scott H.S., Goodall G.J. A network-biology perspective of microRNA function and dysfunction in cancer. Nature reviews. Genetics. 2016;17:719–732. PubMed

Zuo Z., Calin G.A., De Paula H.M., Medeiros L.J., Fernandez M.H., Shimizu M., Garcia-Manero G., Bueso-Ramos C.E. Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood. 2011;118:413–415. doi: 10.1182/blood-2011-01-330704. PubMed DOI PMC

Kim Y., Cheong J.W., Kim Y.K., Eom J.I., Jeung H.K., Kim S.J., Hwang D., Kim J.S., Kim H.J., Min Y.H. Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes. PLoS ONE. 2014;9:e86933. doi: 10.1371/journal.pone.0086933. PubMed DOI PMC

Zuo Z., Maiti S., Hu S., Loghavi S., Calin G.A., Garcia-Manero G., Kantarjian H.M., Medeiros L.J., Cooper L.J., Bueso-Ramos C.E. Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Mod. Pathol. 2015;28:373–382. doi: 10.1038/modpathol.2014.108. PubMed DOI

Merkerova M.D., Hrustincova A., Krejcik Z., Votavova H., Ratajova E., Cermak J., Belickova M. Microarray profiling defines circulating microRNAs associated with myelodysplastic syndromes. Neoplasma. 2017;64:571–578. PubMed

Giudice V., Banaszak L.G., Gutierrez-Rodrigues F., Kajigaya S., Panjwani R., Ibanez M.D., Rios O., Bleck C.K., Stempinski E.S., Raffo D.Q., et al. Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2018;103:1150–1159. doi: 10.3324/haematol.2017.182824. PubMed DOI PMC

Enjeti A.K., Ariyarajah A., D’Crus A., Riveros C., Seldon M., Lincz L.F. Circulating microvesicles are less procoagulant and carry different miRNA cargo in myelodysplasia. Blood Cells Mol. Dis. 2019;74:37–43. doi: 10.1016/j.bcmd.2018.11.001. PubMed DOI

Bobrie A., Colombo M., Krumeich S., Raposo G., Théry C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles. 2012;1:18397. doi: 10.3402/jev.v1i0.18397. PubMed DOI PMC

El-Hefnawy T., Raja S., Kelly L., Bigbee W.L., Kirkwood J.M., Luketich J.D., Godfrey T.E. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 2004;50:564–573. doi: 10.1373/clinchem.2003.028506. PubMed DOI

Savelyeva A.V., Kuligina E.V., Bariakin D.N., Kozlov V.V., Ryabchikova E.I., Richter V.A., Semenov D.V. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions. BioMed Res. Int. 2017;2017:7404912. doi: 10.1155/2017/7404912. PubMed DOI PMC

Freedman J.E., Gerstein M., Mick E., Rozowsky J., Levy D., Kitchen R., Das S., Shah R., Danielson K., Beaulieu L., et al. Diverse human extracellular RNAs are widely detected in human plasma. Nat. Commun. 2016;7:11106. doi: 10.1038/ncomms11106. PubMed DOI PMC

Huang X., Yuan T., Tschannen M., Sun Z., Jacob H., Du M., Liang M., Dittmar R.L., Liu Y., Liang M., et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319. doi: 10.1186/1471-2164-14-319. PubMed DOI PMC

Huang T., Deng C.X. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int. J. Biol. Sci. 2019;15:1. doi: 10.7150/ijbs.27796. PubMed DOI PMC

Szczepanski M.J., Szajnik M., Welsh A., Whiteside T.L., Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96:1302–1309. doi: 10.3324/haematol.2010.039743. PubMed DOI PMC

Beatty M., Guduric-Fuchs J., Brown E., Bridgett S., Chakravarthy U., Hogg R.E., Simpson D.A. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics. 2014;15:933. doi: 10.1186/1471-2164-15-933. PubMed DOI PMC

Whittle E., Leonard M.O., Harrison R., Gant T.W., Tonge D.P. Multi-Method Characterization of the Human Circulating Microbiome. Front Microbiol. 2018;9:3266. doi: 10.3389/fmicb.2018.03266. PubMed DOI PMC

Buck A.H., Coakley G., Simbari F., McSorley H.J., Quintana J.F., Le Bihan T., Kumar S., Abreu-Goodger C., Lear M., Harcus Y., et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat. Commun. 2014;5:5488. doi: 10.1038/ncomms6488. PubMed DOI PMC

Lunavat T.R., Cheng L., Kim D.K., Bhadury J., Jang S.C., Lässer C., Sharples R.A., López M.D., Nilsson J., Gho Y.S., et al. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells - Evidence of unique microRNA cargos. RNA Biol. 2015;12:810–823. doi: 10.1080/15476286.2015.1056975. PubMed DOI PMC

Chevillet J.R., Kang Q., Ruf I.K., Briggs H.A., Vojtech L.N., Hughes S.M., Cheng H.H., Arroyo J.D., Meredith E.K., Gallichotte E.N., et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl. Acad. Sci. USA. 2014;111:14888–14893. doi: 10.1073/pnas.1408301111. PubMed DOI PMC

Nolte-’t Hoen E.N., Buermans H.P., Waasdorp M., Stoorvogel W., Wauben M.H., ’t Hoen P.A. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic. Acids Res. 2012;40:9272–9285. doi: 10.1093/nar/gks658. PubMed DOI PMC

Baglio S.R., Rooijers K., Koppers-Lalic D., Verweij F.J., Lanzón M.P., Zini N., Naaijkens B., Perut F., Niessen H.W., Baldini N., et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 2015;6:127. doi: 10.1186/s13287-015-0116-z. PubMed DOI PMC

Cheng L., Sharples R.A., Scicluna B.J., Hill A.F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracel. Vesicles. 2014;3:23743. doi: 10.3402/jev.v3.23743. PubMed DOI PMC

Endzeliņš E., Berger A., Melne V., Bajo-Santos C., Soboļevska K., Ābols A., Rodriguez M., Šantare D., Rudņickiha A., Lietuvietis V., et al. Detection of circulating miRNAs: Comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC cancer. 2017;17:730. PubMed PMC

Tian F., Shen Y., Chen Z., Li R., Ge Q. No Significant Difference between Plasma miRNAs and Plasma-Derived Exosomal miRNAs from Healthy People. BioMed Res. Int. 2017 doi: 10.1155/2017/1304816. PubMed DOI PMC

Xie J.X., Fan X., Drummond C.A., Majumder R., Xie Y., Chen T., Liu L., Haller S.T., Brewster P.S., Dworkin L.D., et al. MicroRNA profiling in kidney disease: Plasma versus plasma-derived exosomes. Gene. 2017;627:1–8. doi: 10.1016/j.gene.2017.06.003. PubMed DOI PMC

Turchinovich A., Drapkina O., Tonevitsky A. Transcriptome of Extracellular Vesicles: State-of-the-Art. Front. Immunol. 2019;10:202. doi: 10.3389/fimmu.2019.00202. PubMed DOI PMC

Guduric-Fuchs J., O’Connor A., Camp B., O’Neill C.L., Medina R.J., Simpson D.A. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357. doi: 10.1186/1471-2164-13-357. PubMed DOI PMC

Albitar M., Manshouri T., Shen Y., Liu D., Beran M., Kantarjian H.M., Rogers A., Jilani I., Lin C.W., Pierce S., et al. Myelodysplastic syndrome is not merely “preleukemia”. Blood. 2002;100:791–798. doi: 10.1182/blood.V100.3.791. PubMed DOI

Zhang Z., Zhao L., Wei X., Guo Q., Zhu X., Wei R., Yin X., Zhang Y., Wang B., Li X. Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML. Oncol. Lett. 2018;16:5147–5159. doi: 10.3892/ol.2018.9237. PubMed DOI PMC

Dostalova Merkerova M., Krejcik Z., Votavova H., Belickova M., Vasikova A., Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur. J. Hum. Genet. 2011;19:313–319. doi: 10.1038/ejhg.2010.209. PubMed DOI PMC

Bernasconi P. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: Relationships and distinctions-a review. Br. J. Haematol. 2008;142:695–708. doi: 10.1111/j.1365-2141.2008.07245.x. PubMed DOI

Pons A., Nomdedeu B., Navarro A., Gaya A., Gel B., Diaz T., Valera S., Rozman M., Belkaid M., Montserrat E., et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50:1854–1859. doi: 10.3109/10428190903147645. PubMed DOI

Kotaki R., Koyama-Nasu R., Yamakawa N., Kotani A. miRNAs in Normal and Malignant Hematopoiesis. Int. J. Mol. Sci. 2017;18:1495. doi: 10.3390/ijms18071495. PubMed DOI PMC

Chang T.C., Wentzel E.A., Kent O.A., Ramachandran K., Mullendore M., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., Lowenstein C.J., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell. 2007;26:745–752. doi: 10.1016/j.molcel.2007.05.010. PubMed DOI PMC

Votavova H., Grmanova M., Merkerova M.D., Belickova M., Vasikova A., Neuwirtova R., Cermak J. Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J. Hematol. Oncol. 2011;4:1. doi: 10.1186/1756-8722-4-1. PubMed DOI PMC

Merkerova M.D., Krejcik Z., Belickova M., Hrustincova A., Klema J., Stara E., Zemanova Z., Michalova K., Cermak J., Jonasova A. Genome-wide miRNA profiling in myelodysplastic syndrome with del(5q) treated with lenalidomide. Eur. J. Haematol. 2015;95:35–43. doi: 10.1111/ejh.12458. PubMed DOI

Shikama Y., Cao M., Ono T., Feng X., Noji H., Kimura H., Ogawa K., Suzuki Y., Ikeda K., Takeishi Y., et al. Reduction of c-Fos via Overexpression of miR-34a Results in Enhancement of TNF- Production by LPS in Neutrophils from Myelodysplastic Syndrome Patients. PLoS ONE. 2016;11:e0158527. doi: 10.1371/journal.pone.0158527. PubMed DOI PMC

Guo S., Lu J., Schlanger R., Zhang H., Wang J.Y., Fox M.C., Purton L.E., Fleming H.H., Cobb B., Merkenschlager M., et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl. Acad. Sci. USA. 2010;107:14229–14234. doi: 10.1073/pnas.0913574107. PubMed DOI PMC

Tatsumi N., Hojo N., Yamada O., Ogawa M., Katsura Y., Kawata S., Morii E., Sakamoto H., Inaba R., Tsuda A., et al. Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities. Oncogene. 2016;35:1003–1014. doi: 10.1038/onc.2015.154. PubMed DOI

Li Q., He X., Yu Q., Wu Y., Du M., Chen J., Peng F., Zhang W., Chen J., Wang Y., et al. The Notch signal mediates macrophage polarization by regulating miR-125a/miR-99b expression. Artif. Cells Nanomed. Biotechnol. 2019;47:833–843. doi: 10.1080/21691401.2019.1576711. PubMed DOI

Bi L., Sun L., Jin Z., Zhang S., Shen Z. MicroRNA-10a/b are regulators of myeloid differentiation and acute myeloid leukemia. Oncology Lett. 2018;15:5611–5619. doi: 10.3892/ol.2018.8050. PubMed DOI PMC

Dumas P.Y., Mansier O., Prouzet-Mauleon V., Koya J., Villacreces A., de la Grange P.B., Paz D.L., Bidet A., Pasquet J.M., Praloran V., et al. MiR-10a and HOXB4 are overexpressed in atypical myeloproliferative neoplasms. BMC Cancer. 2018;18:1098. doi: 10.1186/s12885-018-4993-2. PubMed DOI PMC

Felli N., Fontana L., Pelosi E., Botta R., Bonci D., Facchiano F., Liuzzi F., Lulli V., Morsilli O., Santoro S., et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA. 2005;102:18081–18086. doi: 10.1073/pnas.0506216102. PubMed DOI PMC

Rommer A., Steinleitner K., Hackl H., Schneckenleithner C., Engelmann M., Scheideler M., Vlatkovic I., Kralovics R., Cerny-Reiterer S., Valent P., et al. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC cancer. 2013;13:364. doi: 10.1186/1471-2407-13-364. PubMed DOI PMC

Xiao Y., Su C., Deng T. miR-223 decreases cell proliferation and enhances cell apoptosis in acute myeloid leukemia via targeting FBXW7. Oncol. Lett. 2016;12:3531–3536. doi: 10.3892/ol.2016.5115. PubMed DOI PMC

Wang X.S., Gong J.N., Yu J., Wang F., Zhang X.H., Yin X.L., Tan Z.Q., Luo Z.M., Yang G.H., Shen C., et al. MicroRNA-29a and microRNA-1423-p are regulators of myeloid differentiation and acute myeloid leukemia. Blood. 2012;119:4992–5004. doi: 10.1182/blood-2011-10-385716. PubMed DOI

Han Y.C., Park C.Y., Bhagat G., Zhang J., Wang Y., Fan J.B., Liu M., Zou Y., Weissman I.L., Gu H. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J. Exp. Med. 2010;207:475–489. doi: 10.1084/jem.20090831. PubMed DOI PMC

Zhou B., Wang S., Mayr C., Bartel D.P., Lodish H.F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl. Acad. Sci. USA. 2007;104:7080–7085. doi: 10.1073/pnas.0702409104. PubMed DOI PMC

Xiao C., Calado D.P., Galler G., Thai T.H., Patterson H.C., Wang J., Rajewsky N., Bender T.P., Rajewsky K. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146–159. doi: 10.1016/j.cell.2007.07.021. PubMed DOI

Hussein K., Theophile K., Büsche G., Schlegelberger B., Göhring G., Kreipe H., Bock O. Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res. 2010;34:328–334. doi: 10.1016/j.leukres.2009.06.014. PubMed DOI

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug. Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Piperigkou Z., Karamanos N.K. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem. Sci. 2019;44:1076–1088. doi: 10.1016/j.tibs.2019.06.007. PubMed DOI

Harada H., Harada Y. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 2015;106:329–336. doi: 10.1111/cas.12614. PubMed DOI PMC

Nigita G., Distefano R., Veneziano D., Romano G., Rahman M., Wang K., Pass H., Croce C.M., Acunzo M., Nana-Sinkam P. Tissue and exosomal miRNA editing in Non-Small Cell Lung. Cancer Sci. Rep. 2018;8:10222. doi: 10.1038/s41598-018-28528-1. PubMed DOI PMC

Crews L.A., Jiang Q., Balaian L., Leu H., Delos Santos N., Court A.C., Sadarangani A., Morris S., Storb R.F., Kulidjian A., et al. Decoding the RNA Editome of Normal Versus Malignant Progenitor Cell Aging Short Title: RNA Editing in Normal Aging and MDS/AML. Stem Cells. Blood. 2016;128:1519. doi: 10.1182/blood.V128.22.1519.1519. DOI

Diamantidis M., Dimoudis S., Klonizakis P., Badekas K., Koutourli K., Haralambidou-Vranitsa S., Ioannidou-Papagiannaki E. The role of apoptosis and current therapeutic challenges in myelodysplastic syndromes. Hippokratia. 2007;11:178–182. PubMed PMC

Park S.J., Kim J.M., Kim J., Hur J., Park S., Kim K., Shin H.J., Chwae Y.J. Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. PNAS. 2018;115:E11721–E11730. doi: 10.1073/pnas.1811432115. PubMed DOI PMC

Caruso S., Poon I.K. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front. Immunol. 2018;9:1486. doi: 10.3389/fimmu.2018.01486. PubMed DOI PMC

Benetatos L., Hatzimichael E., Londin E., Vartholomatos G., Loher P., Rigoutsos I., Briasoulis E. The microRNAs within the DLK1-DIO3 genomic region: Involvement in disease pathogenesis. Cell. Mol. Life Sci. 2013;70:795–814. doi: 10.1007/s00018-012-1080-8. PubMed DOI PMC

Krejčík Z., Beličková M., Hruštincová A., Kléma J., Zemanová Z., Michalová K., Čermák J., Jonášová A., Merkerová M.D. Aberrant expression of the microRNA cluster in 14q32 is associated with del(5q) myelodysplastic syndrome and lenalidomide treatment. Cancer Genet. 2015;208:156–161. doi: 10.1016/j.cancergen.2015.03.003. PubMed DOI

Merkerova M.D., Remesova H., Krejcik Z., Loudova N., Hrustincova A., Szikszai K., Cermak J., Jonasova A., Belickova M. Relationship between Altered miRNA Expression and DNA Methylation of the DLK1-DIO3 Region in Azacitidine-Treated Patients with Myelodysplastic Syndromes and Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Cells. 2018;7:138. doi: 10.3390/cells7090138. PubMed DOI PMC

Li Z., Lu J., Sun M., Mi S., Zhang H., Luo R.T., Chen P., Wang Y., Yan M., Qian Z., et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl. Acad. Sci. USA. 2008;105:15535–15540. doi: 10.1073/pnas.0808266105. PubMed DOI PMC

Shibayama Y., Kondo T., Ohya H., Fujisawa S., Teshima T., Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol. Rep. 2015;33:2176–2182. doi: 10.3892/or.2015.3839. PubMed DOI PMC

Dakir E., Mollinedo F. Genome-wide miRNA profiling and pivotal roles of miRs 125a-5p and 17-92 cluster in human neutrophil maturation and differentiation of acute myeloid leukemia cells. Oncotarget. 2019;10:5313–5331. doi: 10.18632/oncotarget.27123. PubMed DOI PMC

Alemdehy M.F., Haanstra J.R., de Looper H.W., van Strien P.M., Verhagen-Oldenampsen J., Caljouw Y., Sanders M.A., Hoogenboezem R., de Ru A.H., Janssen G.M., et al. ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation. Blood. 2015;125:3937–3948. doi: 10.1182/blood-2014-11-612507. PubMed DOI

Grivna S.T., Beyret E., Wang Z., Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006;20:1709–1714. doi: 10.1101/gad.1434406. PubMed DOI PMC

Malone C.D., Hannon G.J. Small RNAs as Guardians of the Genome. Cell. 2009;136:656–668. doi: 10.1016/j.cell.2009.01.045. PubMed DOI PMC

Martinez V.D., Vucic E.A., Thu K.L., Hubaux R., Enfield K.S., Pikor L.A., Becker-Santos D.D., Brown C.J., Lam S., Lam W.L. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci. Rep. 2015;5:10423. doi: 10.1038/srep10423. PubMed DOI PMC

Gebetsberger J., Wyss L., Mleczko A.M., Reuther J., Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–1373. doi: 10.1080/15476286.2016.1257470. PubMed DOI PMC

Garcia-Silva M.R., Cabrera-Cabrera F., Güida M.C., Cayota A. Hints of tRNA-Derived Small RNAs Role in RNA Silencing Mechanisms. Genes (Basel) 2012;3:603–614. doi: 10.3390/genes3040603. PubMed DOI PMC

Elbarbary R.A., Takaku H., Uchiumi N., Tamiya H., Abe M., Takahashi M., Nishida H., Nashimoto M. Modulation of gene expression by human cytosolic tRNase Z(L) through 5’-half-tRNA. PLoS ONE. 2009;4:e5908. doi: 10.1371/journal.pone.0005908. PubMed DOI PMC

Honda S., Loher P., Shigematsu M., Palazzo J.P., Suzuki R., Imoto I., Rigoutsos I., Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl. Acad. Sci. USA. 2015;112:3816. doi: 10.1073/pnas.1510077112. PubMed DOI PMC

Goodarzi H., Liu X., Nguyen H.C.B., Zhang S., Fish L., Tavazoie S.F. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell. 2015;161:790–802. doi: 10.1016/j.cell.2015.02.053. PubMed DOI PMC

Maute R.L., Schneider C., Sumazin P., Holmes A., Califano A., Basso K., Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2013;110:1404–1409. doi: 10.1073/pnas.1206761110. PubMed DOI PMC

Guo Y., Bosompem A., Mohan S., Erdogan B., Ye F., Vickers K.C., Sheng Q., Zhao S., Li C.I., Su P.F., et al. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genom. 2015;16:727. doi: 10.1186/s12864-015-1929-y. PubMed DOI PMC

Guo Y., Strickland S.A., Mohan S., Li S., Bosompem A., Vickers K.C., Zhao S., Sheng Q., Kim A.S. MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia. Leuk Lymphoma. 2017;58:1–15. doi: 10.1080/10428194.2016.1272680. PubMed DOI PMC

Hornick N.I., Doron B., Abdelhamed S., Huan J., Harrington C.A., Shen R., Cambronne X.A., Verghese S.C., Kurre P. AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci. Signal. 2016;9:ra88. doi: 10.1126/scisignal.aaf2797. PubMed DOI

Huson D.H., Beier S., Flade I., Górska A., El-Hadidi M., Mitra S., Ruscheweyh H.J., Tappu R. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PloS Comput. Biol. 2016;12:e1004957. doi: 10.1371/journal.pcbi.1004957. PubMed DOI PMC

Lu Y., Baras A.S., Halushka M.K. miRge 2.0 for comprehensive analysis of microRNA sequencing data. BMC Bioinform. 2018;19:275. doi: 10.1186/s12859-018-2287-y. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Ishwaran H., Kogalur U.B., Gorodeski E.Z., Minn A.J., Lauer M.S. High-dimensional variable selection for survival data. J. Am. Stat. Assoc. 2010;105:205–217. doi: 10.1198/jasa.2009.tm08622. DOI

Vlachos I.S., Zagganas K., Paraskevopoulou M.D., Georgakilas G., Karagkouni D., Vergoulis T., Dalamagas T., Hatzigeorgiou A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace