• This record comes from PubMed

Dysregulation of transposable elements and PIWI-interacting RNAs in myelodysplastic neoplasms

. 2025 Jan 23 ; 13 (1) : 13. [epub] 20250123

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
NU20-03-00412 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412 Agentura Pro Zdravotnický Výzkum České Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 39849644
PubMed Central PMC11755807
DOI 10.1186/s40364-025-00725-x
PII: 10.1186/s40364-025-00725-x
Knihovny.cz E-resources

BACKGROUND: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear. METHODS: In this study, we examined TE and piRNA expression through parallel RNA and small RNA sequencing of CD34+ hematopoietic stem cells from MDS patients. RESULTS: Comparative analysis of TE and piRNA expression between MDS and control samples revealed several significantly dysregulated molecules. However, significant differences were observed between lower-risk MDS (LR-MDS) and higher-risk MDS (HR-MDS) samples. In HR-MDS, we found an inverse correlation between decreased TE levels and increased piRNA expression and these TE and piRNA levels were significantly associated with patient outcomes. Importantly, the upregulation of PIWIL2, which encodes a key factor in the piRNA pathway, independently predicted poor prognosis in MDS patients, underscoring its potential as a valuable disease marker. Furthermore, pathway analysis of RNA sequencing data revealed that dysregulation of the TE‒piRNA axis is linked to the suppression of processes related to energy metabolism, the cell cycle, and the immune response, suggesting that these disruptions significantly affect cellular activity. CONCLUSIONS: Our findings demonstrate the parallel dysregulation of TEs and piRNAs in HR-MDS patients, highlighting their potential role in MDS progression and indicating that the PIWIL2 level is a promising molecular marker for prognosis.

See more in PubMed

Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and Histiocytic/Dendritic neoplasms. Leukemia. 2022;36(7):1703–19. PubMed PMC

Garcia-Manero G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(8):1307–25. PubMed PMC

Gadji M, Pozzo AR. From cellular morphology to molecular and epigenetic anomalies of myelodysplastic syndromes. Genes Chromosomes Cancer. 2019;58(7):474–83. PubMed

Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20(12):760–72. PubMed

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in Cancer. Cell. 2017;168(4):644–56. PubMed PMC

Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J. 2022;289(5):11660–79. PubMed PMC

Colombo AR, Zubair A, Thiagarajan D, Nuzhdin S, Triche TJ, Ramsingh G. Suppression of transposable elements in leukemic stem cells. Sci Rep. 2017;7(1):7029. PubMed PMC

Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108. PubMed

Du WW, Yang W, Xuan J, Gupta S, Krylov SN, Ma X, et al. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ. 2016;23(9):1458–70. PubMed PMC

Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. Naunyn Schmiedebergs Arch Pharmacol. 2024;1–22. PubMed PMC

Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KSS, Saprunoff HL et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016;15;5. PubMed PMC

Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505(7483):353–9. PubMed PMC

Cheng Y, Wang Q, Jiang W, Bian Y, Zhou Y, Gou A, et al. Emerging roles of piRNAs in cancer: challenges and prospects. Aging. 2019;11(21):9932–46. PubMed PMC

Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet. 2019;51(4):611–7. PubMed PMC

Colombo AR, Triche T, Ramsingh G. Transposable element expression in Acute myeloid leukemia transcriptome and prognosis. Sci Rep. 2018;8(1):1–10. PubMed PMC

Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, et al. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 2020;9(4):794. PubMed PMC

Beck D, Ayers S, Wen J, Brandl MB, Pham TD, Webb P et al. Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in myelodysplastic syndromes. BMC Med Genomics. 2011;4;19. PubMed PMC

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. PubMed

Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. PubMed PMC

Montoro MJ, Ortega M, Villacampa G, Bernal T, Pomares H, Mora Casterá E, et al. A revised International Prognostic Scoring System of 3.5 points stratifies patients with myelodysplastic syndromes into 2 risk categories. Blood. 2020;136(1):9–10.

21 Jeong HH, Yalamanchili HK, Guo C, Shulman JM, Liu Z. An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput. 2018;23:168–79. PubMed

Wang YE, Kutnetsov L, Partensky A, Farid J, Quackenbush J. WebMeV: a cloud platform for analyzing and visualizing cancer genomic data. Cancer Res. 2017;77(21):11–4. PubMed PMC

Sai lakshmi S, Agrawal S, piRNABank:. A web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008;36(1):173–7. PubMed PMC

Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–9. PubMed PMC

Szikszai K, Krejcik Z, Klema J, Loudova N, Hrustincova A, Belickova M, et al. LncRNA profiling reveals that the deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 is associated with higher-risk myelodysplastic syndrome. Cancers (Basel). 2020;12(10):1–21. PubMed PMC

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. PubMed PMC

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10(1):48. PubMed PMC

Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6(7):21800. PubMed PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. PubMed PMC

Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, et al. Using clusterProfiler to characterize multiomics data. Nat Protoc. 2024;19(11):3292–320. PubMed

Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome. Genomics. 2003;82(3):323–30. PubMed

Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer. 2019;1871(1):160–9. PubMed PMC

Hu W, Sun X, Ye T, Feng S, Ruan Q, Xi M, et al. PIWIL2 may serve as a prognostic predictor in cancers: a systematic review and meta-analysis. J BUON. 2021;25(6):2721–30. PubMed

Li J, Xu L, Bao Z, Xu P, Chang H, Wu J, et al. High expression of PIWIL2 promotes tumor cell proliferation, migration and predicts a poor prognosis in glioma. Oncol Rep. 2017;38(1):183–92. PubMed

Feng D, Yan K, Zhou Y, Liang H, Liang J, Zhao W, et al. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis. Oncotarget. 2016;7(40):64575–88. PubMed PMC

Li Y, Wang W, Xu D, Liang H, Yu H, Zhou Y et al. PIWIL2/PDK1 axis promotes the progression of cervical epithelial lesions via metabolic reprogramming to maintain tumor-initiating cell stemness. Adv Sci (Weinh). 2024;2410756. PubMed PMC

Qu X, Liu J, Zhong X, Li X, Zhang Q. PIWIL2 promotes progression of non-small cell lung cancer by inducing CDK2 and cyclin A expression. J Transl Med. 2015;13;301. PubMed PMC

Wang QE, Han C, Milum K, Wani AA. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat Res. 2011;708(1–2):59–68. PubMed PMC

Dinh NTM, Nguyen TM, Park MK, Lee CH, Y-Box Binding. Protein 1: unraveling the multifaceted role in cancer development and therapeutic potential. Int J Mol Sci. 2024;25(2):717. PubMed PMC

Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood. 2021;138(1):71–85. PubMed PMC

Watanabe T, Lin H. Posttranscriptional regulation of gene expression by piwi proteins and piRNAs. Mol Cell. 2014;56(1):18–27. PubMed PMC

Lee HE, Ayarpadikannan S, Kim HS. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst. 2016;90(5):245–57. PubMed

Merkerova MD, Krejcik Z. Transposable elements and piwi-interacting RNAs in hemato-oncology with a focus on myelodysplastic syndrome (review). Int J Oncol. 2021;59(6):1–15. PubMed

Wu L, Xia M, Sun X, Han X, Zu Y, Jabbour EJ, et al. High levels of immunoglobulin expression predict shorter overall survival in patients with acute myeloid leukemia. Eur J Haematol. 2020;105(4):449–59. PubMed

Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct. 2015;10(1):20. PubMed PMC

Kaisrlikova M, Kundrat D, Koralkova P, Trsova I, Lenertova Z, Votavova H, et al. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms. Int J Cancer. 2024;154(9):1652–68. PubMed

Farahani RK, Soleimanpour S, Golmohammadi M, Soleimanpour-Lichaei HR. PIWIL2 regulates the proliferation, apoptosis and colony formation of Colorectal Cancer Cell line. Iran J Biotechnol. 2023;21(1):36–44. PubMed PMC

Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, et al. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal. 2024;14(7):100947. PubMed PMC

To KKW, Zhang H, Cho WC. Competing endogenous RNAs (ceRNAs) and drug resistance to cancer therapy. Cancer Drug Resist. 2024;7;37. PubMed PMC

Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, et al. crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 2024;77:101126. PubMed

Deng X, Liao T, Xie J, Kang D, He Y, Sun Y, et al. The burgeoning importance of PIWI-interacting RNAs in cancer progression. Sci China Life Sci. 2024;67(4):653–62. PubMed

Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 2018;8(19):5213–230. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...