Dysregulation of transposable elements and PIWI-interacting RNAs in myelodysplastic neoplasms
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
NU20-03-00412
Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412
Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412
Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00412
Agentura Pro Zdravotnický Výzkum České Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
UHKT 00023736
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
39849644
PubMed Central
PMC11755807
DOI
10.1186/s40364-025-00725-x
PII: 10.1186/s40364-025-00725-x
Knihovny.cz E-resources
- Keywords
- Bioinformatics, Biomarkers, Myelodysplastic neoplasms, Next-generation sequencing, Transposable elements, piRNA,
- Publication type
- Journal Article MeSH
BACKGROUND: Myelodysplastic neoplasms (MDS) are heterogeneous hematopoietic disorders characterized by ineffective hematopoiesis and genome instability. Mobilization of transposable elements (TEs) is an important source of genome instability leading to oncogenesis, whereas small PIWI-interacting RNAs (piRNAs) act as cellular suppressors of TEs. However, the roles of TEs and piRNAs in MDS remain unclear. METHODS: In this study, we examined TE and piRNA expression through parallel RNA and small RNA sequencing of CD34+ hematopoietic stem cells from MDS patients. RESULTS: Comparative analysis of TE and piRNA expression between MDS and control samples revealed several significantly dysregulated molecules. However, significant differences were observed between lower-risk MDS (LR-MDS) and higher-risk MDS (HR-MDS) samples. In HR-MDS, we found an inverse correlation between decreased TE levels and increased piRNA expression and these TE and piRNA levels were significantly associated with patient outcomes. Importantly, the upregulation of PIWIL2, which encodes a key factor in the piRNA pathway, independently predicted poor prognosis in MDS patients, underscoring its potential as a valuable disease marker. Furthermore, pathway analysis of RNA sequencing data revealed that dysregulation of the TE‒piRNA axis is linked to the suppression of processes related to energy metabolism, the cell cycle, and the immune response, suggesting that these disruptions significantly affect cellular activity. CONCLUSIONS: Our findings demonstrate the parallel dysregulation of TEs and piRNAs in HR-MDS patients, highlighting their potential role in MDS progression and indicating that the PIWIL2 level is a promising molecular marker for prognosis.
1st Department of Medicine General University Hospital Prague Czech Republic
Department of Genomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Laboratory of Anemias Institute of Hematology and Blood Transfusion Prague Czech Republic
See more in PubMed
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: myeloid and Histiocytic/Dendritic neoplasms. Leukemia. 2022;36(7):1703–19. PubMed PMC
Garcia-Manero G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98(8):1307–25. PubMed PMC
Gadji M, Pozzo AR. From cellular morphology to molecular and epigenetic anomalies of myelodysplastic syndromes. Genes Chromosomes Cancer. 2019;58(7):474–83. PubMed
Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20(12):760–72. PubMed
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in Cancer. Cell. 2017;168(4):644–56. PubMed PMC
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J. 2022;289(5):11660–79. PubMed PMC
Colombo AR, Zubair A, Thiagarajan D, Nuzhdin S, Triche TJ, Ramsingh G. Suppression of transposable elements in leukemic stem cells. Sci Rep. 2017;7(1):7029. PubMed PMC
Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108. PubMed
Du WW, Yang W, Xuan J, Gupta S, Krylov SN, Ma X, et al. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ. 2016;23(9):1458–70. PubMed PMC
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. Naunyn Schmiedebergs Arch Pharmacol. 2024;1–22. PubMed PMC
Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KSS, Saprunoff HL et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016;15;5. PubMed PMC
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505(7483):353–9. PubMed PMC
Cheng Y, Wang Q, Jiang W, Bian Y, Zhou Y, Gou A, et al. Emerging roles of piRNAs in cancer: challenges and prospects. Aging. 2019;11(21):9932–46. PubMed PMC
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet. 2019;51(4):611–7. PubMed PMC
Colombo AR, Triche T, Ramsingh G. Transposable element expression in Acute myeloid leukemia transcriptome and prognosis. Sci Rep. 2018;8(1):1–10. PubMed PMC
Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, et al. Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 2020;9(4):794. PubMed PMC
Beck D, Ayers S, Wen J, Brandl MB, Pham TD, Webb P et al. Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in myelodysplastic syndromes. BMC Med Genomics. 2011;4;19. PubMed PMC
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. PubMed
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. PubMed PMC
Montoro MJ, Ortega M, Villacampa G, Bernal T, Pomares H, Mora Casterá E, et al. A revised International Prognostic Scoring System of 3.5 points stratifies patients with myelodysplastic syndromes into 2 risk categories. Blood. 2020;136(1):9–10.
21 Jeong HH, Yalamanchili HK, Guo C, Shulman JM, Liu Z. An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput. 2018;23:168–79. PubMed
Wang YE, Kutnetsov L, Partensky A, Farid J, Quackenbush J. WebMeV: a cloud platform for analyzing and visualizing cancer genomic data. Cancer Res. 2017;77(21):11–4. PubMed PMC
Sai lakshmi S, Agrawal S, piRNABank:. A web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008;36(1):173–7. PubMed PMC
Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular identifiers to improve quantification accuracy. Genome Res. 2017;27(3):491–9. PubMed PMC
Szikszai K, Krejcik Z, Klema J, Loudova N, Hrustincova A, Belickova M, et al. LncRNA profiling reveals that the deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 is associated with higher-risk myelodysplastic syndrome. Cancers (Basel). 2020;12(10):1–21. PubMed PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. PubMed PMC
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10(1):48. PubMed PMC
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6(7):21800. PubMed PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. PubMed PMC
Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, et al. Using clusterProfiler to characterize multiomics data. Nat Protoc. 2024;19(11):3292–320. PubMed
Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome. Genomics. 2003;82(3):323–30. PubMed
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer. 2019;1871(1):160–9. PubMed PMC
Hu W, Sun X, Ye T, Feng S, Ruan Q, Xi M, et al. PIWIL2 may serve as a prognostic predictor in cancers: a systematic review and meta-analysis. J BUON. 2021;25(6):2721–30. PubMed
Li J, Xu L, Bao Z, Xu P, Chang H, Wu J, et al. High expression of PIWIL2 promotes tumor cell proliferation, migration and predicts a poor prognosis in glioma. Oncol Rep. 2017;38(1):183–92. PubMed
Feng D, Yan K, Zhou Y, Liang H, Liang J, Zhao W, et al. Piwil2 is reactivated by HPV oncoproteins and initiates cell reprogramming via epigenetic regulation during cervical cancer tumorigenesis. Oncotarget. 2016;7(40):64575–88. PubMed PMC
Li Y, Wang W, Xu D, Liang H, Yu H, Zhou Y et al. PIWIL2/PDK1 axis promotes the progression of cervical epithelial lesions via metabolic reprogramming to maintain tumor-initiating cell stemness. Adv Sci (Weinh). 2024;2410756. PubMed PMC
Qu X, Liu J, Zhong X, Li X, Zhang Q. PIWIL2 promotes progression of non-small cell lung cancer by inducing CDK2 and cyclin A expression. J Transl Med. 2015;13;301. PubMed PMC
Wang QE, Han C, Milum K, Wani AA. Stem cell protein Piwil2 modulates chromatin modifications upon cisplatin treatment. Mutat Res. 2011;708(1–2):59–68. PubMed PMC
Dinh NTM, Nguyen TM, Park MK, Lee CH, Y-Box Binding. Protein 1: unraveling the multifaceted role in cancer development and therapeutic potential. Int J Mol Sci. 2024;25(2):717. PubMed PMC
Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood. 2021;138(1):71–85. PubMed PMC
Watanabe T, Lin H. Posttranscriptional regulation of gene expression by piwi proteins and piRNAs. Mol Cell. 2014;56(1):18–27. PubMed PMC
Lee HE, Ayarpadikannan S, Kim HS. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst. 2016;90(5):245–57. PubMed
Merkerova MD, Krejcik Z. Transposable elements and piwi-interacting RNAs in hemato-oncology with a focus on myelodysplastic syndrome (review). Int J Oncol. 2021;59(6):1–15. PubMed
Wu L, Xia M, Sun X, Han X, Zu Y, Jabbour EJ, et al. High levels of immunoglobulin expression predict shorter overall survival in patients with acute myeloid leukemia. Eur J Haematol. 2020;105(4):449–59. PubMed
Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct. 2015;10(1):20. PubMed PMC
Kaisrlikova M, Kundrat D, Koralkova P, Trsova I, Lenertova Z, Votavova H, et al. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms. Int J Cancer. 2024;154(9):1652–68. PubMed
Farahani RK, Soleimanpour S, Golmohammadi M, Soleimanpour-Lichaei HR. PIWIL2 regulates the proliferation, apoptosis and colony formation of Colorectal Cancer Cell line. Iran J Biotechnol. 2023;21(1):36–44. PubMed PMC
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, et al. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal. 2024;14(7):100947. PubMed PMC
To KKW, Zhang H, Cho WC. Competing endogenous RNAs (ceRNAs) and drug resistance to cancer therapy. Cancer Drug Resist. 2024;7;37. PubMed PMC
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, et al. crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 2024;77:101126. PubMed
Deng X, Liao T, Xie J, Kang D, He Y, Sun Y, et al. The burgeoning importance of PIWI-interacting RNAs in cancer progression. Sci China Life Sci. 2024;67(4):653–62. PubMed
Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai R, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 2018;8(19):5213–230. PubMed PMC