• This record comes from PubMed

Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms

. 2024 May 01 ; 154 (9) : 1652-1668. [epub] 20240105

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
UHKT,00023736 Ministry of Health of the Czech Republic
NU-21-03-00565 Ministry of Health of the Czech Republic
LX22NPO5102 Next Generation EU, Programme EXCELES
LM2023033 European Biobanking and Biomolecular Research Infrastructure
UNCE/MED/016 Charles University
JG_2023_016 UP Young Researcher Grant Competition

Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.

See more in PubMed

DeZern AE. Lower risk but high risk. Hematology Am Soc Hematol Educ Program. 2021;2021(1):428-434. doi:10.1182/HEMATOLOGY.2021000277

Mills KI, Kohlmann A, Williams PM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063-1072. doi:10.1182/BLOOD-2008-10-187203

Pellagatti A, Benner A, Mills KI, et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol. 2013;31(28):3557-3564. doi:10.1200/JCO.2012.45.5626

Shiozawa Y, Malcovati L, Gallì A, et al. Gene expression and risk of leukemic transformation in myelodysplasia. Blood. 2017;130(24):2642-2653. doi:10.1182/BLOOD-2017-05-783050

Im H, Rao V, Sridhar K, et al. Distinct transcriptomic and exomic abnormalities within myelodysplastic syndrome marrow cells. Leuk Lymphoma. 2018;59(12):2952-2962. doi:10.1080/10428194.2018.1452210

Kaisrlikova M, Vesela J, Kundrat D, et al. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS. Leukemia. 2022;36(7):1898-1906. doi:10.1038/s41375-022-01584-3

Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465. doi:10.1182/blood-2012-03-420489

Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419-425. doi:10.1182/BLOOD-2005-10-4149

Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800. doi:10.1371/journal.pone.0021800

Pellagatti A, Marafioti T, Paterson JC, et al. Marked downregulation of the granulopoiesis regulator LEF1 is associated with disease progression in the myelodysplastic syndromes. Br J Haematol. 2009;146(1):86-90. doi:10.1111/j.1365-2141.2009.07720.x

Sakoda T, Kikushige Y, Miyamoto T, et al. TIM-3 signaling hijacks the canonical Wnt/β-catenin pathway to maintain cancer stemness in acute myeloid leukemia. Blood Adv. 2023;7(10):2053-2065. doi:10.1182/bloodadvances.2022008405

Takacova S, Slany R, Bartkova J, et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell. 2012;21(4):517-531. doi:10.1016/J.CCR.2012.01.021

Koralkova P, Belickova M, Kundrat D, et al. Low plasma citrate levels and specific transcriptional signatures associated with quiescence of CD34+ progenitors predict azacitidine therapy failure in MDS/AML patients. Cancers (Basel). 2021;13(9):2161. doi:10.3390/cancers13092161

Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297-308. doi:10.1038/nrm2351

De Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131(5):479-487. doi:10.1182/BLOOD-2017-06-746412

Heibl S, Stauder R, Pfeilstöcker M. Is myelodysplasia a consequence of normal aging? Curr Oncol Rep. 2021;23(12):1-11. doi:10.1007/s11912-021-01136-5

Kim MK, Jeon BN, Koh DI, et al. Regulation of the cyclin-dependent kinase inhibitor 1A gene (CDKN1A) by the repressor BOZF1 through inhibition of p53 acetylation and transcription factor Sp1 binding. J Biol Chem. 2013;288(10):7053-7064. doi:10.1074/jbc.M112.416297

Caramel J, Ligier M, Puisieux A. Pleiotropic roles for ZEB1 in cancer. Cancer Res. 2018;78(1):30-35. doi:10.1158/0008-5472.CAN-17-2476

Sánchez-Tilló E, Fanlo L, Siles L, et al. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 2014;21:247-257. doi:10.1038/cdd.2013.123

Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer. 2022;3(5):536-546. doi:10.1038/s43018-022-00384-z

Jung H, Lee D, Lee J, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47(11):1242-1248. doi:10.1038/ng.3414

Hung SY, Lin CC, Hsu CL, et al. The expression levels of long non-coding RNA KIAA0125 are associated with distinct clinical and biological features in myelodysplastic syndromes. Br J Haematol. 2021;192(3):589-598. doi:10.1111/bjh.17231

Benetatos L, Hatzimichael E, Dasoula A, et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 2010;34(2):148-153. doi:10.1016/J.LEUKRES.2009.06.019

Szikszai K, Krejcik Z, Klema J, et al. LncRNA profiling reveals that the deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 is associated with higher-risk myelodysplastic syndrome. Cancers (Basel). 2020;12(10):1-21. doi:10.3390/cancers12102726

Wu Q, Xiang S, Ma J, et al. Long non-coding RNA CASC15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN1A and ZEB1. Mol Oncol. 2018;12(6):799-813. doi:10.1002/1878-0261.12187

Hu Y, Lin J, Fang H, et al. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 2018;32(10):2250-2262. doi:10.1038/S41375-018-0104-2

Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med. 2023;23(1):17-30. doi:10.1007/s10238-021-00782-0

Nachmias B, Khan DH, Voisin V, et al. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia. 2022;36(5):1283-1295. doi:10.1038/s41375-022-01513-4

Stavropoulou V, Kaspar S, Brault L, et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell. 2016;30(1):43-58. doi:10.1016/j.ccell.2016.05.011

Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24(14):2375-2385. doi:10.1038/sj.onc.1208429

Yoshino S, Yokoyama T, Sunami Y, et al. Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9. Blood. 2021;137(1):75-88. doi:10.1182/blood.2019004586

Gheldof A, Hulpiau P, van Roy F, de Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69(15):2527-2541. doi:10.1007/s00018-012-0935-3

Yu QC, Geng A, Preusch CB, et al. Activation of Wnt/β-catenin signaling by Zeb1 in endothelial progenitors induces vascular quiescence entry. Cell Rep. 2022;41(8):111694. doi:10.1016/J.CELREP.2022.111694

Drápela S, Bouchal J, Jolly MK, Culig Z, Souček K. ZEB1: a critical regulator of cell plasticity, DNA damage response, and therapy resistance. Front Mol Biosci. 2020;7:36. doi:10.3389/FMOLB.2020.00036

Rouillard AD, Gundersen GW, Fernandez NF, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). 2016;2016:baw100. doi:10.1093/DATABASE/BAW100

Hu Z, Mao JH, Curtis C, et al. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer. Breast Cancer Res. 2016;18(1):70. doi:10.1186/S13058-016-0728-Y

Maturi V, Enroth S, Heldin CH, Moustakas A. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. J Cell Physiol. 2018;233(10):7113-7127. doi:10.1002/JCP.26634

Will B, Zhou L, Vogler TO, et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood. 2012;120(10):2076-2086. doi:10.1182/blood-2011-12-399683

Chen Y, Li J, Xu L, Găman MA, Zou Z. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: from biology to therapeutic targeting. Cell Death Discov. 2022;8(1):397. doi:10.1038/s41420-022-01193-0

Knijnenburg TA, Wang L, Zimmermann MT, et al. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep. 2018;23(1):239-254. doi:10.1016/J.CELREP.2018.03.076

Pellagatti A, Armstrong RN, Steeples V, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132(12):1225-1240. doi:10.1182/blood-2018-04-843771

Flach J, Jann JC, Knaflic A, et al. Replication stress signaling is a therapeutic target in myelodysplastic syndromes with splicing factor mutations. Haematologica. 2021;106(11):2906-2917. doi:10.3324/haematol.2020.254193

Zhang Q, Li H, Jin H, Tan H, Zhang J, Sheng S. The global landscape of intron retentions in lung adenocarcinoma. BMC Med Genomics. 2014;7(1):1-9. doi:10.1186/1755-8794-7-15

Shiozawa Y, Malcovati L, Gallì A, et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun. 2018;9(1):3649. doi:10.1038/s41467-018-06063-x

Yang YT, Chiu YC, Kao CJ, et al. The prognostic significance of global aberrant alternative splicing in patients with myelodysplastic syndrome. Blood Cancer J. 2018;8(8):78. doi:10.1038/s41408-018-0115-2

Yao CY, Chen CH, Huang HH, et al. A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. Blood Adv. 2017;1(19):1505-1516. doi:10.1182/bloodadvances.2017008284

Nadhan R, Dhanasekaran DN. Decoding the oncogenic signals from the long non-coding RNAs. Onco. 2021;1(2):176-206. doi:10.3390/ONCO1020014/S1

Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 2000;95(10):3208-3213. doi:10.1182/BLOOD.V95.10.3208

Corn PG, Smith BD, Ruckdeschel ES, Douglas D, Baylin SB, Herman JG. E-cadherin expression is silenced by 5′ CpG Island methylation in acute leukemia. Clin Cancer Res. 2000;6(11):4243-4248.

Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol. 2006;76(1):23-32. doi:10.1111/j.1600-0609.2005.00559.x

Weyemi U, Redon CE, Choudhuri R, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7(1):1-12. doi:10.1038/ncomms10711

Peñalosa-Ruiz G, Bousgouni V, Gerlach JP, et al. WDR5, BRCA1, and BARD1 co-regulate the DNA damage response and modulate the mesenchymal-to-epithelial transition during early reprogramming. Stem Cell Rep. 2019;12(4):743-756. doi:10.1016/J.STEMCR.2019.02.006

Fu R, Li Y, Jiang N, et al. Inactivation of endothelial ZEB1 impedes tumor progression and sensitizes tumors to conventional therapies. J Clin Invest. 2020;130(3):1252-1270. doi:10.1172/JCI131507

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. β-Catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A. 2011;108(48):19204-19209. doi:10.1073/PNAS.1108977108/-/DCSUPPLEMENTAL/PNAS.1108977108_SI.PDF

Unnikrishnan A, Papaemmanuil E, Beck D, et al. Integrative genomics identifies the molecular basis of resistance to Azacitidine therapy in myelodysplastic syndromes. Cell Rep. 2017;20(3):572-585. doi:10.1016/j.celrep.2017.06.067

Stopka T, Minařík L, Dusilková N, et al. G-CSF plus azacitidine versus azacitidine alone for patients with high-risk myelodysplastic syndrome: academic, open label, randomized trial. Blood Cancer J. 2022;12(7):105. doi:10.1038/S41408-022-00698-2

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...