• This record comes from PubMed

Germline Jak2-R1063H mutation interferes with normal hematopoietic development and increases risk of thrombosis and leukemic transformation

. 2025 Aug 21 ; () : . [epub] 20250821

Status Publisher Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21/03/00338 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
24-11730S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
24-11730S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
24-11730S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
24-11730S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LM 2018126 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/18_046/0015861 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_026/0008448 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LM2023067 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
FNBr 65269705 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
FNBr 65269705 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
FNBr 65269705 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)

Links

PubMed 40841769
DOI 10.1038/s41375-025-02737-w
PII: 10.1038/s41375-025-02737-w
Knihovny.cz E-resources

The acquired JAK2-V617F mutation plays a causal role in myeloproliferative neoplasms (MPN). Weakly activating JAK2 germline variants have been associated with MPN risk, but the underlying mechanisms remain unclear. We previously identified the JAK2-R1063H germline variant, which contributes to hereditary MPN and increased disease severity in essential thrombocythemia. Here, we studied alterations in hematopoiesis in Jak2-R1063H knock-in mice. The Jak2-R1063H mouse cohort exhibited increased mortality, stimulated thrombopoiesis and elevated D-dimers levels, indicative of thrombotic complications. Bone marrow analysis revealed myeloid bias, enhanced megakaryopoiesis and activation of inflammatory signaling. Transcriptional and functional assays of hematopoietic stem cells suggested their accelerated aging and functional decline. The Egr1 transcriptional network, including the Thbs1 gene, progressively increased in aging mice, reinforcing alterations initiated by Jak2/Stat signaling. In murine acute myelogenous leukemia models, the Jak2-R1063H cooperated with a driver oncogene in promoting leukemogenesis. Germline JAK2-R1063H was found in 10 of 200 MPN patients from local hematology centers, with a higher minor allele frequency compared to healthy controls. Patients harboring JAK2-R1063H variant exhibited an increased incidence of thrombotic complications and disease progression with shortened survival. In conclusion, our findings identify the JAK2-R1063H germline variant as a risk factor for MPN development, thrombotic complications, and leukemic transformation. Our study, which involves a mouse model and a cohort of 200 MPN patients, characterizes the JAK2-R1063H germline mutation as a risk factor for MPN development, thrombotic complications, and leukemic transformation. These findings may have important clinical implications for managing MPN patients carrying the JAK2-R1063H germline variant.

See more in PubMed

Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunological Rev. 2009;228:273–87.

Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79. PubMed

Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586:769–75. PubMed PMC

Tapper W, Kralovics R, Harutyunyan A, Zoi K, Leung W, Godfrey A, et al. Genetic variation at MECOM, TERT, JAK2 and MYB predispose to myeloproliferative neoplasm. Nat Commun. 2015;2015:6691.

Zoi K, Cross N. Genomics of Myeloproliferative Neoplasms. J Clin Oncol. 2017;35:947–54. PubMed

Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4. PubMed

Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41:455–9. PubMed PMC

Lanikova L, Babosova O, Swierczek S, Wang L, Wheeler DA, Divoky V, et al. Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood. 2016;128:2266–70. PubMed PMC

Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, et al. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer-Am Cancer Soc. 2019;125:1855–66.

Mead AJ, Chowdhury O, Pecquet C, Dusa A, Woll P, Atkinson D, et al. Impact of isolated germline mutation on human hematopoiesis. Blood. 2013;121:4156–65. PubMed

Brooks SA, Luty SB, Lai HY, Morse SJ, Nguyen TK, Royer LR, et al. JAK2 results in cytokine hypersensitivity without causing an overt myeloproliferative disorder in a mouse transduction-transplantation model. Exp Hematol. 2016;44:24–9. PubMed

Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141:1909–21. PubMed

Kapralova K, Horvathova M, Pecquet C, Fialova Kucerova J, Pospisilova D, Leroy E, et al. Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128:1418–23. PubMed

Mambet C, Babosova O, Defour J-P, Leroy E, Necula L, Stanca O, et al. Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood. 2018;132:2695–9. PubMed

Lee E-J, Dykas DJ, Leavitt AD, Camire RM, Ebberink E, García de Frutos P, et al. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv. 2017;1:1224–37. PubMed PMC

Reeves BN, Beckman JD. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. Curr Hematologic Malignancy Rep. 2021;16:304–13.

He F, Laranjeira ABA, Kong T, Lin S, Ashworth KJ, Liu A, et al. Multiomic profiling reveals metabolic alterations mediating aberrant platelet activity and inflammation in myeloproliferative neoplasms. J Clin Investig. 2024;134:e17225631.

Carrelha J, Mazzi S, Winroth A, Hagemann-Jensen M, Ziegenhain C, Högstrand K, et al. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. Nat Immunol. 2024;25:1007–19. PubMed PMC

Poscablo DM, Worthington AK, Smith-Berdan S, Rommel MGE, Manso BA, Adili R, et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell. 2024;187:3090–107. e21. PubMed PMC

Barrios M, Rodríguez-Acosta A, Gil A, Salazar AM, Taylor P, Sánchez EE, et al. Comparative hemostatic parameters in BALB/c, C57BL/6 and C3H/He mice. Thromb Res. 2009;124:338–43. PubMed

Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging that Is Repaired upon Entry into Cell Cycle. Cell Stem Cell. 2014;15:37–50. PubMed PMC

Kaisrlikova M, Kundrat D, Koralkova P, Trsova I, Lenertova Z, Votavova H, et al. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms. Int J Cancer. 2024;154:1652–68. PubMed

Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, et al. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep. 2020;32:108093. PubMed PMC

Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging that Reinforce Self-Renewal. Cell Stem Cell. 2014;14:673–88. PubMed PMC

Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2:ra75. PubMed PMC

Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al. Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell. 2014;15:507–22. PubMed

Wang Z, Emmel G, Lim HS, Zhu W, Kosters A, Ghosn EEB, et al. Stromal STAT5-Mediated Trophic Activity Regulates Hematopoietic Niche Factors. Stem Cells. 2023;41:944–57. PubMed PMC

Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene. 2007;26:6724–37. PubMed

Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood. 2008;111:5553–61. PubMed PMC

Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell. 2023;30:1403–20. PubMed PMC

Gao S, Wu Z, Kannan J, Mathews L, Feng X, Kajigaya S, et al. Comparative Transcriptomic Analysis of the Hematopoietic System between Human and Mouse by Single Cell RNA Sequencing. Cells. 2021;10:973.

Uras IZ, Maurer B, Nivarthi H, Jodl P, Kollmann K, Prchal-Murphy M, et al. CDK6 coordinates JAK2 (V617F) mutant MPN via NF-κB and apoptotic networks. Blood. 2019;133:1677–90. PubMed PMC

Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 2005;106:1479–87. PubMed PMC

Ho Y-H, del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, et al. Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell. 2019;25:407–18. e6. PubMed PMC

Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias. Plos One. 2016;11:e0158369. PubMed PMC

Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell. 2010;18:524–35. PubMed PMC

Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, et al. Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell. 2018;33:29–43.e7. PubMed

Van Egeren D, Kamaz B, Liu S, Nguyen M, Reilly CR, Kalyva M, et al. Transcriptional differences between JAK2-V617F and wild-type bone marrow cells in patients with myeloproliferative neoplasms. Exp Hematol. 2022;107:14–9. PubMed

Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Develop Biol. 2022;10:92576141.

Desterke C, Bennaceur-Griscelli A, Turhan AG. EGR1 dysregulation defines an inflammatory and leukemic program in cell trajectory of human-aged hematopoietic stem cells (HSC). Stem Cell Res Ther. 2021;12:419. PubMed PMC

Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw10064.

Colom Díaz PA, Mistry JJ, Trowbridge JJ. Hematopoietic stem cell aging and leukemia transformation. Blood. 2023;142:533–42. PubMed PMC

Hatakeyama K, Kikushige Y, Ishihara D, Yamamoto S, Kawano G, Tochigi T, et al. Thrombospondin-1 is an endogenous substrate of cereblon responsible for immunomodulatory drug–induced thromboembolism. Blood Adv. 2024;8:785–96. PubMed PMC

Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Developmental Biol. 2024;155:3–11.

McLaughlin JN, Mazzoni MR, Cleator JH, Earls L, Perdigoto AL, Brooks JD, et al. Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells. J Biol Chem. 2005;280:22172–80. PubMed

Bellon M, Nicot C. Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer. 2023;22:18. PubMed PMC

Dutta A, Nath D, Yang Y, Le BT, Rahman MF-U, Faughnan P, et al. Genetic ablation of Pim1 or pharmacologic inhibition with TP-3654 ameliorates myelofibrosis in murine models. Leukemia. 2022;36:746–59. PubMed

Liu W, Pircher J, Schuermans A, Ul Ain Q, Zhang Z, Honigberg MC, et al. Jak2V617F clonal hematopoiesis promotes arterial thrombosis via platelet activation and cross talk. Blood. 2024;143:1539–50. PubMed

Yang M, Cooley BC, Li W, Chen Y, Vasquez-Vivar J, Scoggins NiO, et al. Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood. 2017;129:2917–27. PubMed PMC

Guadall A, Lesteven E, Letort G, Awan Toor S, Delord M, Pognant D, et al. Endothelial Cells Harbouring the JAK2V617F Mutation Display Pro-Adherent and Pro-Thrombotic Features. Thromb Haemost. 2018;118:1586–99. PubMed

Farina M, Russo D, Hoffman R. The possible role of mutated endothelial cells in myeloproliferative neoplasms. Haematologica. 2021;106:2813–23. PubMed PMC

Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature. 2006;442:818–22. PubMed

the Analysis of Czech Genome for Theranostics (A-C-G-T) project [Internet]. [cited 29.11.2024]. Available from: https://database.acgt.cz/ .

NCBI SNP database - National Institutes of Health (NIH) [Internet]. [cited 29.11.2024]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs41316003#frequency_tab

Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells. 2019;8:854. PubMed PMC

Akada H, Akada S, Hutchison RE, Sakamoto K, Wagner K-U, Mohi G. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells. Stem Cells. 2014;32:1878–89. PubMed

Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9:115–28. PubMed

Nauseef WM. Human neutrophils ≠ murine neutrophils: Does it matter?. Immunol Rev. 2023;314:442–56. PubMed

Bogeska R, Mikecin A-M, Kaschutnig P, Fawaz M, Büchler-Schäff M, Le D, et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell. 2022;29:1273–84. e8. PubMed PMC

Caiado F, Pietras EM, Manz MG. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J Exp Med. 2021;218.

Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3:1045–50. PubMed

Schiavone D, Avalle L, Dewilde S, Poli V. The immediate early genes Fos and Egr1 become STAT1 transcriptional targets in the absence of STAT3. FEBS Lett. 2011;585:2455–60. PubMed

Tian S, Tapley P, Sincich C, Stein R, Rosen J, Lamb P. Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes. Blood. 1996;88:4435–44. PubMed

Kulkarni PP, Ekhlak M, Singh V, Kailashiya V, Singh N, Dash D Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy. FASEB J.2023;37:e22768.

Gangaraju R, Song J, Kim SJ, Tashi T, Reeves BN, Sundar KM, et al. Thrombotic, inflammatory, and HIF-regulated genes and thrombosis risk in polycythemia vera and essential thrombocythemia. Blood Adv. 2020;4:1115–30. PubMed PMC

Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol. 2025;32:213–20. PubMed

Ramalingam P, Butler J, Poulos M. Endothelial mTOR Preserves Hematopoietic Stem Cell Fitness By Suppressing Thrombospondin1. Blood. 2022;140:1678.

Schwemmers S, Will B, Waller CF, Abdulkarim K, Johansson P, Andreasson B, et al. JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol. 2007;35:1695–703. PubMed PMC

Burocziova M, Grusanovic S, Vanickova K, Kosanovic S, Alberich-Jorda M. Chronic inflammation promotes cancer progression as a second hit. Exp Hematol. 2023;128:30–7. PubMed

Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev. 2020;42:100710. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...