Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

BA. Akpinar, F. Magni, M. Yuce, SJ. Lucas, H. Šimková, J. Šafář, S. Vautrin, H. Bergès, F. Cattonaro, J. Doležel, H. Budak,

. 2015 ; 16 (-) : 453. [pub] 20150613

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS: The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS: Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010104
003      
CZ-PrNML
005      
20160412123306.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-015-1641-y $2 doi
024    7_
$a 10.1186/s12864-015-1641-y $2 doi
035    __
$a (PubMed)26070810
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Akpinar, Bala Ani $u Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey. balaani@sabanciuniv.edu. $7 gn_A_00003036
245    14
$a The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements / $c BA. Akpinar, F. Magni, M. Yuce, SJ. Lucas, H. Šimková, J. Šafář, S. Vautrin, H. Bergès, F. Cattonaro, J. Doležel, H. Budak,
520    9_
$a BACKGROUND: The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS: The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS: Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
650    _2
$a chromozomy rostlin $7 D032461
650    _2
$a kontigové mapování $x metody $7 D020451
650    _2
$a DNA rostlinná $x analýza $7 D018744
650    _2
$a molekulární evoluce $7 D019143
650    12
$a duplikace genu $7 D020440
650    12
$a genová přestavba $7 D015321
650    _2
$a fyzikální mapování chromozomů $x metody $7 D020161
650    _2
$a pšenice $x genetika $7 D014908
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Magni, Federica $u Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy. fmagni@igatechnology.com.
700    1_
$a Yuce, Meral $u Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey. meralyuce@sabanciuniv.edu.
700    1_
$a Lucas, Stuart J $u Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey. slucas@sabanciuniv.edu.
700    1_
$a Šimková, Hana $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic. simkovah@ueb.cas.cz.
700    1_
$a Šafář, Jan $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic. safar@ueb.cas.cz.
700    1_
$a Vautrin, Sonia $u Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France. sonia.vautrin@toulouse.inra.fr.
700    1_
$a Bergès, Hélène $u Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France. hberges@toulouse.inra.fr.
700    1_
$a Cattonaro, Federica $u Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy. fcattonaro@igatechnology.com.
700    1_
$a Doležel, Jaroslav $u Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic. dolezel@ueb.cas.cz.
700    1_
$a Budak, Hikmet $u Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey. budak@sabanciuniv.edu. Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey. budak@sabanciuniv.edu.
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 16, č. - (2015), s. 453
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26070810 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412123349 $b ABA008
999    __
$a ok $b bmc $g 1113533 $s 934472
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 453 $e 20150613 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...