An Insight into Anion Extraction by Amphiphiles: Hydrophobic Microenvironments as a Requirement for the Extractant Selectivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38027376
PubMed Central
PMC10666219
DOI
10.1021/acsomega.3c06767
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.
Zobrazit více v PubMed
Sessler J.; Gale P. A.; Cho W.-S.. Anion Receptor Chemistry; Stoddart J. F., Ed.; RSC Publishing: Cambridge, 2006.
Gale P. A. Anion Receptor Chemistry. Chem. Commun. 2011, 47, 82–86. 10.1039/C0CC00656D. PubMed DOI
Wu X.; Gilchrist A. M.; Gale P. A. Prospects and Challenges in Anion Recognition and Transport. Chem. 2020, 6, 1296–1309. 10.1016/j.chempr.2020.05.001. DOI
Chen L.; Berry S. N.; Wu X.; Howe E. N. W.; Gale P. A. Advances in Anion Receptor Chemistry. Chem. 2020, 6, 61–141. 10.1016/j.chempr.2019.12.002. DOI
Macreadie L. K.; Gilchrist A. M.; McNaughton D. A.; Ryder W. G.; Fares M.; Gale P. A. Progress in Anion Receptor Chemistry. Chem. 2022, 8, 46–118. 10.1016/j.chempr.2021.10.029. DOI
Amendola V.; Fabbrizzi L.; Mosca L. Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 2010, 39, 3889–3915. 10.1039/b822552b. PubMed DOI
Busschaert N.; Caltagirone C.; Van Rossom W.; Gale P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. 10.1021/acs.chemrev.5b00099. PubMed DOI
Langhton M. J.; Serpell Ch. J.; Beer P. D. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angew. Chem., Int. Ed. 2015, 1974–1987. 10.1002/anie.201506589. PubMed DOI PMC
Kunz W.; Henle J.; Ninham B. W. Zur Lehre Von Der Wirkung Der Salze (About the Science of the Effect of Salts) Franz Hofmeister’s Historical Papers. Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37. 10.1016/j.cocis.2004.05.005. DOI
Pal S.; Ghosh T. K.; Ghosh R.; Mondal S.; Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord. Chem. Rev. 2020, 405, 21312810.1016/j.ccr.2019.213128. DOI
Hargrove A. E.; Nieto S.; Zhang T.; Sessler J. L.; Anslyn E. V. Artificial Receptors for the Recognition of Phosphorylated |Molecules. Chem. Rev. 2011, 111, 6603–6782. 10.1021/cr100242s. PubMed DOI PMC
Ghosh T. K.; Ghosh P. Balancing the acidity of the pendant urea arm of bis-heteroleptic ruthenium(II) complex containing pyridyl triazole for improved oxyanion recognition. Dalton Trans. 2018, 47, 7561–7570. 10.1039/C8DT01023D. PubMed DOI
Ghosh T. K.; Dutta R.; Maji S.; Pal S.; Ghosh P. Removal of phosphate in presence of interfering sulfate and arsenate by a tripodal thiourea receptor by precipitation through crystallization in semi-aqueous medium. Polyhedron 2019, 172, 74–79. 10.1016/j.poly.2019.03.025. DOI
Beletskiy E. V.; Kass S. R. Selective binding and extraction of aqueous dihydrogen phosphate solutions via three-armed thiourea receptors. Org. Biomol. Chem. 2015, 13, 9844–9849. 10.1039/C5OB01450F. PubMed DOI
Harris S. M.; Nguyen J. T.; Pailloux S. L.; Mansergh J. P.; Dresel M. J.; Swanholm T. B.; Gao T.; Pierre V. C. Gadolinium complex for catch and release of phosphate from water. Environ. Sci. Technol. 2017, 51, 4549–4558. 10.1021/acs.est.6b05815. PubMed DOI
Danil de Namor A. F. D.; Hamdan W. A.; Webb O.; Bance-Soualhi R.; Howlin B.; Al Hakawati N. Calix[4]arene urea derivatives: The pathway from fundamental studies to the selective removal of fluorides and phosphates from water. J. Hazard. Mater. 2019, 364, 733–741. 10.1016/j.jhazmat.2018.07.025. PubMed DOI
Deliomeroglu M. K.; Lynch V. M.; Sessler J. L. Schiff-base appended polymers for phosphate removal. Supramol. Chem. 2017, 30, 807–821. 10.1080/10610278.2017.1372581. DOI
Eller L. R.; Stȩpień M.; Fowler C. J.; Lee J. T.; Sessler J. L.; Moyer B. A. Octamethyl-Octaundecylcyclo[8]pyrrole: A Promising Sulfate Anion Extractant. J. Am. Chem. Soc. 2007, 129, 11020–11021. 10.1021/ja074568k. PubMed DOI
Fowler C. J.; Haverlock T. J.; Moyer B. A.; Shriver J. A.; Gross D. E.; Marquez M.; Sessler J. L.; Hossain M. A.; Bowman-James K. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias. J. Am. Chem. Soc. 2008, 130, 14386–14387. 10.1021/ja806511b. PubMed DOI PMC
Moyer B. A.; Sloop F. V.; Fowler C. J.; Haverlock T. J.; Kang H.-A.; Delmau L. H.; Bau D. M.; Hossain M. A.; Bowman-James K.; Shriver J. A.; Bill N. L.; Gross D. E.; Marquez M.; Lynch V. M.; Sessler J. L. Enhanced Liquid–Liquid Anion Exchange Using Macrocyclic Anion Receptors: Effect of Receptor Structure on Sulfate–Nitrate Exchange Selectivity. Supramol. Chem. 2010, 22, 653–671. 10.1080/10610271003763263. DOI
Williams G. T.; Haynes C. J. E.; Fares M.; Caltagirone C.; Hiscock J. R.; Gale P. A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021, 50, 2737–2763. 10.1039/D0CS00948B. PubMed DOI
Hay B. P.; Firman T. K.; Moyer B. A. Structural Design Criteria for Anion Hosts: Strategies for Achieving Anion Shape Recognition through the Complementary Placement of Urea Donor Groups. J. Am. Chem. Soc. 2005, 127, 1810–1819. 10.1021/ja043995k. PubMed DOI
Sprakel L. M. J.; Schuur B. Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep. Purif. Technol. 2019, 211, 935–957. 10.1016/j.seppur.2018.10.023. DOI
López-Garzón C. S.; Straathof A. J. J. Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 2014, 32, 873–904. 10.1016/j.biotechadv.2014.04.002. PubMed DOI
Krzyzaniak A.; Schuur B.; de Haan A. B. Equilibrium studies on lactic acid extraction with N,N-didodecylpyridin-4-amine (DDAP) extractant. Chem. Eng. Sci. 2014, 109, 236–243. 10.1016/j.ces.2014.01.030. DOI
La Cognata S.; Mobili R.; Merlo F.; Speltini A.; Boiocchi M.; Recca T.; Maher L. J. III; Amendola V. Sensing and liquid-liquid extraction of dicarboxylates using dicopper cryptates. ACS Omega 2020, 5, 26573–26582. 10.1021/acsomega.0c03337. PubMed DOI PMC
Cuřínová P.; Winkler M.; Krupková A.; Císařová I.; Budka J.; Wun Ch. N.; Blechta V.; Malý M.; Červenková Št’astná L.; Sýkora J.; Strašák T. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS Omega 2021, 6, 15514–15522. 10.1021/acsomega.1c02142. PubMed DOI PMC
Salvadori K.; Šimková L.; Císařová I.; Sýkora J.; Ludvík J.; Cuřínová P. Sulfonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation. ChemPlusChem. 2020, 85, 1401–1411. 10.1002/cplu.202000326. PubMed DOI
For data reduction, scaling and absorption correction of 6 and 7, CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England,2020 and APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2021. were used, respectively.
Palatinus L.; Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI
Betteridge P. W.; Carruthers J. R.; Cooper R. I.; Prout K.; Watkin D. J. Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487.10.1107/S0021889803021800. DOI
Rohlíček J.; Husak M. MCE2005–a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007, 40, 600.10.1107/S0021889807018894. DOI
Macrae C. F.; Edgington P. R.; McCabe P.; Pidcock E.; Shields G. P.; Taylor R.; Towler M.; van de Streek J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. 10.1107/S002188980600731X. DOI
Salvadori K.; Krupková A.; Červenková Št’astná L.; Mullerová M.; Eigner V.; Strašák T.; Cuřínová P. Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties. Molecules 2021, 26, 5670.10.3390/molecules26185670. PubMed DOI PMC
Farkas N.; Kramar J. A. Dynamic light scattering distributions by any means. J. Nanopart. Res. 2021, 23, 120.10.1007/s11051-021-05220-6. PubMed DOI PMC
Von Krbek L. K. S.; Schalley C. A.; Thordarson P. Assessing cooperativity in supramolecular systems. Chem. Soc. Rev. 2017, 46, 2622–2637. 10.1039/C7CS00063D. PubMed DOI
Webb J. E. A.; Crossley M.; Turner P.; Thordarson P. Pyromellitamide Aggregates and Their Response to Anion Stimuli. J. Am. Chem. Soc. 2007, 129, 7155–7162. 10.1021/ja0713781. PubMed DOI
Hirose A. K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 193–209. 10.1023/A:1011117412693. DOI
Thordarson P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. 10.1039/C0CS00062K. PubMed DOI
The binding constants were calculated using the BindFit application freely available at: http://supramolecular.org.
Das R. S.; Agrawal Y. K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. 10.1016/j.vibspec.2011.08.003. DOI
Net S.; Delmont A.; Sempere R.; Paluselli A.; Ouddane B. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ. 2015, 515–516, 162–180. 10.1016/j.scitotenv.2015.02.013. PubMed DOI
Krupková A.; Müllerová M.; Petričkovič R.; Strašák T. On the edge between organic solvent nanofiltration and ultrafiltration: Characterization of regenerated cellulose membrane with aspect on dendrimer purification and recycling. Sep. Purif. Technol. 2023, 310, 12314110.1016/j.seppur.2023.123141. DOI
For molecular modelling, Molecular Operating Environment (MOE 2019.10), Chemical Computing Group, I. available from: http://www.chemcomp.com, and Schrödinger Schrödinger Suite, Release 2021–2, LLC New York, NY, USA available from: https://www.schrodinger.com were used.