Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34151129
PubMed Central
PMC8210436
DOI
10.1021/acsomega.1c02142
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A novel approach to inducing anion transport over the dialytic membrane was proposed and successfully tested using the dihydrogen phosphate anion. The anion receptor based on isophthalamide was anchored on a dendritic skeleton, resulting in a macromolecular structure with a limited possibility to cross the dialytic membrane. The dendritic receptor was placed in a compartment separated from a mother anion solution by a membrane. The resulting anion complexation reduced the actual concentration of the anion and induced the anion transfer across the membrane. The anion concentration in mother solution decreased, while it was found to be increased in the compartment with the dendritic receptor. This phenomenon was observed using dendritic receptors with four and eight complexation sites. A detailed analysis of a series of dialytic experiments by 1H NMR spectroscopy enabled an assessment of the complexation behavior of both receptors and an evaluation of the dendritic effect on the anion complexation.
Faculty of Science J E Purkyně University České mládeže 8 Ùstí nad Labem 400 96 Czech Republic
Institute of Chemical Process Fundamentals of CAS v v i Rozvojová 135 Prague 6 165 02 Czech Republic
Zobrazit více v PubMed
Warwick C.; Guerreiro A.; Soares A. Sensing and Analysis of Soluble Phosphates in Environmental Samples: A Review. Biosens. Bioelectron. 2013, 41, 1–11. 10.1016/j.bios.2012.07.012. PubMed DOI
Brown R. B.; Razzaque M. S. Phosphate Toxicity and Tumorigenesis. Biochim. Biophys. Acta – Rev. Cancer 2018, 1869, 303–309. 10.1016/j.bbcan.2018.04.007. PubMed DOI
Minami T.; Liu Y.; Akdeniz A.; Koutnik P.; Esipenko N. A.; Nishiyabu R.; Kubo Y.; Anzenbacher P. Jr. Intramolecular Indicator Displacement Assay for Anions: Supramolecular Sensor for Glyphosate. J. Am. Chem. Soc. 2014, 136, 11396–11401. 10.1021/ja504535q. PubMed DOI
Evans N. H.; Beer P. D. Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications. Angew. Chem., Int. Ed. 2014, 53, 11716–11754. 10.1002/anie.201309937. PubMed DOI
Esipenko N. A.; Koutnik P.; Minami T.; Mosca L.; Lynch V. M.; Zyryanov G. V.; Anzenbacher P. First Supramolecular Sensors for Phosphonate Anions. Chem. Sci. 2013, 4, 3617–3623. 10.1039/c3sc51407b. DOI
Davis J. T. In Topics in Heterocyclic Chemistry; Gale P. A.; Dehaen W. Eds.; Springer: New York, 2010; Vol. 24. 10.1007/978-3-642-15444-7. DOI
Ravikumar I.; Ghosh P. Recognition and Separation of Sulfate Anions. Chem. Soc. Rev. 2012, 41, 3077–3098. 10.1039/c2cs15293b. PubMed DOI
Moyer B. A.; Custelcean R.; Hay B. P.; Sessler J. L.; Bowman-James K.; Day V. W.; Kang S. O. A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorg. Chem. 2013, 52, 3473–3490. 10.1021/ic3016832. PubMed DOI
Fowler C. J.; Haverlock T. J.; Moyer B. A.; Shriver J. A.; Gross D. E.; Marquez M.; Sessler J. L.; Hossain M. A.; Bowman-James K. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias. J. Am. Chem. Soc. 2008, 130, 14386–14387. 10.1021/ja806511b. PubMed DOI PMC
Beletskiy E. V.; Kass S. R. Selective Binding and Extraction of Aqueous Dihydrogen Phosphate Solutions via Three-Armed Thiourea Receptors. Org. Biomol. Chem. 2015, 13, 9844–9849. 10.1039/c5ob01450f. PubMed DOI
Williams N. J.; Seipp C. A.; Garrabrant K. A.; Custelcean R.; Holguin E.; Keum J. K.; Ellis R. J.; Moyer B. A. Surprisingly Selective Sulfate Extraction by a Simple Monofunctional Di(Imino)Guanidinium Micelle-Forming Anion Receptor. Chem. Commun. 2018, 54, 10048–10051. 10.1039/C8CC05115A. PubMed DOI
Qin L.; Vervuurt S. J. N.; Elmes R. B. P.; Berry S. N.; Proschogo N.; Jolliffe K. A. Extraction and Transport of Sulfate Using Macrocyclic Squaramide Receptors. Chem. Sci. 2020, 11, 201–207. 10.1039/c9sc04786g. DOI
He Q.; Peters G. M.; Lynch V. M.; Sessler J. L. Recognition and Extraction of Cesium Hydroxide and Carbonate by Using a Neutral Multitopic Ion-Pair Receptor. Angew. Chem., Int. Ed. 2017, 56, 13396–13400. 10.1002/anie.201705788. PubMed DOI PMC
Wu X.; Gilchrist A. M.; Gale P. A. Prospects and Challenges in Anion Recognition and Transport. Chem 2020, 6, 1296–1309. 10.1016/j.chempr.2020.05.001. DOI
Chen L.; Berry S. N.; Wu X.; Howe E. N. W.; Gale P. A. Advances in Anion Receptor Chemistry. Chem 2020, 6, 61–141. 10.1016/j.chempr.2019.12.002. DOI
Ma J.-P.; Yu Y.; Dong Y.-B. Fluorene-Based Cu(II)-MOF: A Visual Colorimetric Anion Sensor and Separator Based on an Anion-Exchange Approach. Chem. Commun. 2012, 48, 2946–2948. 10.1039/c2cc16800f. PubMed DOI
Chi X.; Peters G. M.; Brockman C.; Lynch V. M.; Sessler J. L. Controlling Structure beyond the Initial Coordination Sphere: Complexation-Induced Reversed Micelle Formation in Calix[4]Pyrrole-Containing Diblock Copolymers. J. Am. Chem. Soc. 2018, 140, 13219–13222. 10.1021/jacs.8b09620. PubMed DOI
Ji X.; Wu R. T.; Long L.; Guo C.; Khashab N. M.; Huang F.; Sessler J. L. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network. J. Am. Chem. Soc. 2018, 140, 2777–2780. 10.1021/jacs.7b13656. PubMed DOI
Chang G.; Wang Y.; Wang C.; Li Y.; Xu Y.; Yang L. A Recyclable Hydroxyl Functionalized Polyindole Hydrogel for Sodium Hydroxide Extraction via the Synergistic Effect of Cation-π Interactions and Hydrogen Bonding. Chem. Commun. 2018, 54, 9785–9788. 10.1039/c8cc05819a. PubMed DOI
De Namor A. F. D.; Shehab M. Double-Cavity Calix[4]Pyrrole Derivative with Enhanced Capacity for the Fluoride Anion. J. Phys. Chem. B 2005, 109, 17440–17444. 10.1021/jp0530707. PubMed DOI
Danil de Namor A. F. D.; Hamdan W. A.; Webb O.; Bance-Soualhi R.; Howlin B.; Al Hakawati N. Calix[4]Arene Urea Derivatives: The Pathway from Fundamental Studies to the Selective Removal of Fluorides and Phosphates from Water. J. Hazard. Mater. 2019, 364, 733–741. 10.1016/j.jhazmat.2018.07.025. PubMed DOI
Herma R.; Wrobel D.; Liegertová M.; Müllerová M.; Strašák T.; Maly M.; Semerádtová A.; Štofik M.; Appelhans D.; Maly J. Carbosilane Dendrimers with Phosphonium Terminal Groups Are Low Toxic Non-Viral Transfection Vectors for SiRNA Cell Delivery. Int. J. Pharm. 2019, 562, 51–65. 10.1016/j.ijpharm.2019.03.018. PubMed DOI
Liegertová M.; Wrobel D.; Herma R.; Müllerová M.; Št’astná L. Č.; Cuřínová P.; Strašák T.; Malý M.; Čermák J.; Smejkal J.; Štofik M.; Maly J. Evaluation of Toxicological and Teratogenic Effects of Carbosilane Glucose Glycodendrimers in Zebrafish Embryos and Model Rodent Cell Lines. Nanotoxicology 2018, 797–818. 10.1080/17435390.2018.1475582. PubMed DOI
Müllerová M.; Šabata S.; Matoušek J.; Kormunda M.; Holubová J.; Bálková R.; Petričkovič R.; Koštejn M.; Kupčík J.; Fajgar R.; et al. Organoclays with Carbosilane Dendrimers Containing Ammonium or Phosphonium Groups. New J. Chem. 2018, 42, 1187–1196. 10.1039/c7nj03979d. DOI
Strašák T.; Malý J.; Wróbel D.; Malý M.; Herma R.; Čermák J.; Müllerová M.; Št′astná L. Č.; Cuřínová P. Phosphonium Carbosilane Dendrimers for Biomedical Applications-Synthesis, Characterization and Cytotoxicity Evaluation. RSC Adv. 2017, 7, 18724–18744. 10.1039/c7ra01845b. DOI
Gaab M.; Bellemin-Laponnaz S.; Gade L. H. “Catalysis in a Tea Bag:” Synthesis, Catalytic Performance and Recycling of Dendrimer-Immobilised Bis- and Trisoxazoline Copper Catalysts. Chem. - A Eur. J. 2009, 15, 5450–5462. 10.1002/chem.200900504. PubMed DOI
Mullen D. G.; Desai A.; van Dongen M. A.; Barash M.; Baker J. R. Jr.; Banaszak Holl M. M. Best Practices for Purification and Characterization of PAMAM Dendrimer. Macromolecules 2012, 45, 5316–5320. 10.1021/ma300485p. PubMed DOI PMC
Rundel J. T.; Paul B. K.; Remcho V. T. Organic Solvent Nanofiltration for Microfluidic Purification of Poly(Amidoamine) Dendrimers. J. Chromatogr. A 2007, 1162, 167–174. 10.1016/j.chroma.2007.06.042. PubMed DOI
Busschaert N.; Caltagirone C.; Van Rossom W.; Gale P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. 10.1021/acs.chemrev.5b00099. PubMed DOI
Navakhun K.; Sawangsri R.; Ruangpornvisuti V. Syntheses of Amide Based Anion Receptors and Investigation of Their Associations with Anions and Their Molecular Structures Using Proton NMR Titration and DFT Methods. J. Mol. Struct. 2014, 1061, 32–40. 10.1016/j.molstruc.2013.12.060. DOI
Gale P. A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Acc. Chem. Res. 2006, 39, 465–475. 10.1021/ar040237q. PubMed DOI
Coles S. J.; Frey J. G.; Gale P. A.; Hursthouse M. B.; Light M. E.; Navakhun K.; Thomas G. L. Anion-Directed Assembly: The First Fluoride-Directed Double Helix. Chem. Commun. 2003, 5, 568–569. 10.1039/b210847j. PubMed DOI
Brooks S. J.; Evans L. S.; Gale P. A.; Hursthouse M. B.; Light M. E. “Twisted” Isophthalamide Analogues. Chem. Commun. 2005, 6, 734–736. 10.1039/b413654c. PubMed DOI
Santacroce P. V.; Davis J. T.; Light M. E.; Gale P. A.; Iglesias-Sánchez J. C.; Prados P.; Quesada R. Conformational Control of Transmembrane Cl- Transport. J. Am. Chem. Soc. 2007, 129, 1886–1887. 10.1021/ja068067v. PubMed DOI
Zhou L. L.; Roovers J. Synthesis of Novel Carbosilane Dendritic Macromolecules. Macromolecules 1993, 963–968. 10.1021/ma00057a013. DOI
Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Betteridge P. W.; Carruthers J. R.; Cooper R. I.; Prout K.; Watkin D. J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Crystallogr. 2003, 36, 1487–1487. 10.1107/S0021889803021800. DOI
Farrugia L. J. ORTEP-3 for Windows - a Version of ORTEP -III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565–565. 10.1107/S0021889897003117. DOI
Sun H.; Jin Z.; Yang C.; Akkermans R. L. C.; Robertson S. H.; Spenley N. A.; Miller S.; Todd S. M. COMPASS II: Extended Coverage for Polymer and Drug-like Molecule Databases. J. Mol. Model. 2016, 22, 47.10.1007/s00894-016-2909-0. PubMed DOI
Chalaris M.; Marinakis S.; Dellis D. Temperature Effects on the Structure and Dynamics of Liquid Dimethyl Sulfoxide: A Molecular Dynamics Study. Fluid Phase Equilib. 2008, 267, 47–60. 10.1016/j.fluid.2008.02.019. DOI
Brynn Hibbert D.; Thordarson P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. 10.1039/C6CC03888C. PubMed DOI
Ulatowski F.; Dąbrowa K.; Bałakier T.; Jurczak J. Recognizing the Limited Applicability of Job Plots in Studying Host–Guest Interactions in Supramolecular Chemistry. J. Org. Chem. 2016, 81, 1746–1756. 10.1021/acs.joc.5b02909. PubMed DOI
Thordarson P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. 10.1039/C0CS00062K. PubMed DOI