Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors

. 2021 Jun 15 ; 6 (23) : 15514-15522. [epub] 20210603

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34151129

A novel approach to inducing anion transport over the dialytic membrane was proposed and successfully tested using the dihydrogen phosphate anion. The anion receptor based on isophthalamide was anchored on a dendritic skeleton, resulting in a macromolecular structure with a limited possibility to cross the dialytic membrane. The dendritic receptor was placed in a compartment separated from a mother anion solution by a membrane. The resulting anion complexation reduced the actual concentration of the anion and induced the anion transfer across the membrane. The anion concentration in mother solution decreased, while it was found to be increased in the compartment with the dendritic receptor. This phenomenon was observed using dendritic receptors with four and eight complexation sites. A detailed analysis of a series of dialytic experiments by 1H NMR spectroscopy enabled an assessment of the complexation behavior of both receptors and an evaluation of the dendritic effect on the anion complexation.

Zobrazit více v PubMed

Warwick C.; Guerreiro A.; Soares A. Sensing and Analysis of Soluble Phosphates in Environmental Samples: A Review. Biosens. Bioelectron. 2013, 41, 1–11. 10.1016/j.bios.2012.07.012. PubMed DOI

Brown R. B.; Razzaque M. S. Phosphate Toxicity and Tumorigenesis. Biochim. Biophys. Acta – Rev. Cancer 2018, 1869, 303–309. 10.1016/j.bbcan.2018.04.007. PubMed DOI

Minami T.; Liu Y.; Akdeniz A.; Koutnik P.; Esipenko N. A.; Nishiyabu R.; Kubo Y.; Anzenbacher P. Jr. Intramolecular Indicator Displacement Assay for Anions: Supramolecular Sensor for Glyphosate. J. Am. Chem. Soc. 2014, 136, 11396–11401. 10.1021/ja504535q. PubMed DOI

Evans N. H.; Beer P. D. Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications. Angew. Chem., Int. Ed. 2014, 53, 11716–11754. 10.1002/anie.201309937. PubMed DOI

Esipenko N. A.; Koutnik P.; Minami T.; Mosca L.; Lynch V. M.; Zyryanov G. V.; Anzenbacher P. First Supramolecular Sensors for Phosphonate Anions. Chem. Sci. 2013, 4, 3617–3623. 10.1039/c3sc51407b. DOI

Davis J. T. In Topics in Heterocyclic Chemistry; Gale P. A.; Dehaen W. Eds.; Springer: New York, 2010; Vol. 24. 10.1007/978-3-642-15444-7. DOI

Ravikumar I.; Ghosh P. Recognition and Separation of Sulfate Anions. Chem. Soc. Rev. 2012, 41, 3077–3098. 10.1039/c2cs15293b. PubMed DOI

Moyer B. A.; Custelcean R.; Hay B. P.; Sessler J. L.; Bowman-James K.; Day V. W.; Kang S. O. A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorg. Chem. 2013, 52, 3473–3490. 10.1021/ic3016832. PubMed DOI

Fowler C. J.; Haverlock T. J.; Moyer B. A.; Shriver J. A.; Gross D. E.; Marquez M.; Sessler J. L.; Hossain M. A.; Bowman-James K. Enhanced Anion Exchange for Selective Sulfate Extraction: Overcoming the Hofmeister Bias. J. Am. Chem. Soc. 2008, 130, 14386–14387. 10.1021/ja806511b. PubMed DOI PMC

Beletskiy E. V.; Kass S. R. Selective Binding and Extraction of Aqueous Dihydrogen Phosphate Solutions via Three-Armed Thiourea Receptors. Org. Biomol. Chem. 2015, 13, 9844–9849. 10.1039/c5ob01450f. PubMed DOI

Williams N. J.; Seipp C. A.; Garrabrant K. A.; Custelcean R.; Holguin E.; Keum J. K.; Ellis R. J.; Moyer B. A. Surprisingly Selective Sulfate Extraction by a Simple Monofunctional Di(Imino)Guanidinium Micelle-Forming Anion Receptor. Chem. Commun. 2018, 54, 10048–10051. 10.1039/C8CC05115A. PubMed DOI

Qin L.; Vervuurt S. J. N.; Elmes R. B. P.; Berry S. N.; Proschogo N.; Jolliffe K. A. Extraction and Transport of Sulfate Using Macrocyclic Squaramide Receptors. Chem. Sci. 2020, 11, 201–207. 10.1039/c9sc04786g. DOI

He Q.; Peters G. M.; Lynch V. M.; Sessler J. L. Recognition and Extraction of Cesium Hydroxide and Carbonate by Using a Neutral Multitopic Ion-Pair Receptor. Angew. Chem., Int. Ed. 2017, 56, 13396–13400. 10.1002/anie.201705788. PubMed DOI PMC

Wu X.; Gilchrist A. M.; Gale P. A. Prospects and Challenges in Anion Recognition and Transport. Chem 2020, 6, 1296–1309. 10.1016/j.chempr.2020.05.001. DOI

Chen L.; Berry S. N.; Wu X.; Howe E. N. W.; Gale P. A. Advances in Anion Receptor Chemistry. Chem 2020, 6, 61–141. 10.1016/j.chempr.2019.12.002. DOI

Ma J.-P.; Yu Y.; Dong Y.-B. Fluorene-Based Cu(II)-MOF: A Visual Colorimetric Anion Sensor and Separator Based on an Anion-Exchange Approach. Chem. Commun. 2012, 48, 2946–2948. 10.1039/c2cc16800f. PubMed DOI

Chi X.; Peters G. M.; Brockman C.; Lynch V. M.; Sessler J. L. Controlling Structure beyond the Initial Coordination Sphere: Complexation-Induced Reversed Micelle Formation in Calix[4]Pyrrole-Containing Diblock Copolymers. J. Am. Chem. Soc. 2018, 140, 13219–13222. 10.1021/jacs.8b09620. PubMed DOI

Ji X.; Wu R. T.; Long L.; Guo C.; Khashab N. M.; Huang F.; Sessler J. L. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network. J. Am. Chem. Soc. 2018, 140, 2777–2780. 10.1021/jacs.7b13656. PubMed DOI

Chang G.; Wang Y.; Wang C.; Li Y.; Xu Y.; Yang L. A Recyclable Hydroxyl Functionalized Polyindole Hydrogel for Sodium Hydroxide Extraction via the Synergistic Effect of Cation-π Interactions and Hydrogen Bonding. Chem. Commun. 2018, 54, 9785–9788. 10.1039/c8cc05819a. PubMed DOI

De Namor A. F. D.; Shehab M. Double-Cavity Calix[4]Pyrrole Derivative with Enhanced Capacity for the Fluoride Anion. J. Phys. Chem. B 2005, 109, 17440–17444. 10.1021/jp0530707. PubMed DOI

Danil de Namor A. F. D.; Hamdan W. A.; Webb O.; Bance-Soualhi R.; Howlin B.; Al Hakawati N. Calix[4]Arene Urea Derivatives: The Pathway from Fundamental Studies to the Selective Removal of Fluorides and Phosphates from Water. J. Hazard. Mater. 2019, 364, 733–741. 10.1016/j.jhazmat.2018.07.025. PubMed DOI

Herma R.; Wrobel D.; Liegertová M.; Müllerová M.; Strašák T.; Maly M.; Semerádtová A.; Štofik M.; Appelhans D.; Maly J. Carbosilane Dendrimers with Phosphonium Terminal Groups Are Low Toxic Non-Viral Transfection Vectors for SiRNA Cell Delivery. Int. J. Pharm. 2019, 562, 51–65. 10.1016/j.ijpharm.2019.03.018. PubMed DOI

Liegertová M.; Wrobel D.; Herma R.; Müllerová M.; Št’astná L. Č.; Cuřínová P.; Strašák T.; Malý M.; Čermák J.; Smejkal J.; Štofik M.; Maly J. Evaluation of Toxicological and Teratogenic Effects of Carbosilane Glucose Glycodendrimers in Zebrafish Embryos and Model Rodent Cell Lines. Nanotoxicology 2018, 797–818. 10.1080/17435390.2018.1475582. PubMed DOI

Müllerová M.; Šabata S.; Matoušek J.; Kormunda M.; Holubová J.; Bálková R.; Petričkovič R.; Koštejn M.; Kupčík J.; Fajgar R.; et al. Organoclays with Carbosilane Dendrimers Containing Ammonium or Phosphonium Groups. New J. Chem. 2018, 42, 1187–1196. 10.1039/c7nj03979d. DOI

Strašák T.; Malý J.; Wróbel D.; Malý M.; Herma R.; Čermák J.; Müllerová M.; Št′astná L. Č.; Cuřínová P. Phosphonium Carbosilane Dendrimers for Biomedical Applications-Synthesis, Characterization and Cytotoxicity Evaluation. RSC Adv. 2017, 7, 18724–18744. 10.1039/c7ra01845b. DOI

Gaab M.; Bellemin-Laponnaz S.; Gade L. H. “Catalysis in a Tea Bag:” Synthesis, Catalytic Performance and Recycling of Dendrimer-Immobilised Bis- and Trisoxazoline Copper Catalysts. Chem. - A Eur. J. 2009, 15, 5450–5462. 10.1002/chem.200900504. PubMed DOI

Mullen D. G.; Desai A.; van Dongen M. A.; Barash M.; Baker J. R. Jr.; Banaszak Holl M. M. Best Practices for Purification and Characterization of PAMAM Dendrimer. Macromolecules 2012, 45, 5316–5320. 10.1021/ma300485p. PubMed DOI PMC

Rundel J. T.; Paul B. K.; Remcho V. T. Organic Solvent Nanofiltration for Microfluidic Purification of Poly(Amidoamine) Dendrimers. J. Chromatogr. A 2007, 1162, 167–174. 10.1016/j.chroma.2007.06.042. PubMed DOI

Busschaert N.; Caltagirone C.; Van Rossom W.; Gale P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. 10.1021/acs.chemrev.5b00099. PubMed DOI

Navakhun K.; Sawangsri R.; Ruangpornvisuti V. Syntheses of Amide Based Anion Receptors and Investigation of Their Associations with Anions and Their Molecular Structures Using Proton NMR Titration and DFT Methods. J. Mol. Struct. 2014, 1061, 32–40. 10.1016/j.molstruc.2013.12.060. DOI

Gale P. A. Structural and Molecular Recognition Studies with Acyclic Anion Receptors. Acc. Chem. Res. 2006, 39, 465–475. 10.1021/ar040237q. PubMed DOI

Coles S. J.; Frey J. G.; Gale P. A.; Hursthouse M. B.; Light M. E.; Navakhun K.; Thomas G. L. Anion-Directed Assembly: The First Fluoride-Directed Double Helix. Chem. Commun. 2003, 5, 568–569. 10.1039/b210847j. PubMed DOI

Brooks S. J.; Evans L. S.; Gale P. A.; Hursthouse M. B.; Light M. E. “Twisted” Isophthalamide Analogues. Chem. Commun. 2005, 6, 734–736. 10.1039/b413654c. PubMed DOI

Santacroce P. V.; Davis J. T.; Light M. E.; Gale P. A.; Iglesias-Sánchez J. C.; Prados P.; Quesada R. Conformational Control of Transmembrane Cl- Transport. J. Am. Chem. Soc. 2007, 129, 1886–1887. 10.1021/ja068067v. PubMed DOI

Zhou L. L.; Roovers J. Synthesis of Novel Carbosilane Dendritic Macromolecules. Macromolecules 1993, 963–968. 10.1021/ma00057a013. DOI

Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Betteridge P. W.; Carruthers J. R.; Cooper R. I.; Prout K.; Watkin D. J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Crystallogr. 2003, 36, 1487–1487. 10.1107/S0021889803021800. DOI

Farrugia L. J. ORTEP-3 for Windows - a Version of ORTEP -III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565–565. 10.1107/S0021889897003117. DOI

Sun H.; Jin Z.; Yang C.; Akkermans R. L. C.; Robertson S. H.; Spenley N. A.; Miller S.; Todd S. M. COMPASS II: Extended Coverage for Polymer and Drug-like Molecule Databases. J. Mol. Model. 2016, 22, 47.10.1007/s00894-016-2909-0. PubMed DOI

Chalaris M.; Marinakis S.; Dellis D. Temperature Effects on the Structure and Dynamics of Liquid Dimethyl Sulfoxide: A Molecular Dynamics Study. Fluid Phase Equilib. 2008, 267, 47–60. 10.1016/j.fluid.2008.02.019. DOI

Brynn Hibbert D.; Thordarson P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. 10.1039/C6CC03888C. PubMed DOI

Ulatowski F.; Dąbrowa K.; Bałakier T.; Jurczak J. Recognizing the Limited Applicability of Job Plots in Studying Host–Guest Interactions in Supramolecular Chemistry. J. Org. Chem. 2016, 81, 1746–1756. 10.1021/acs.joc.5b02909. PubMed DOI

Thordarson P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. 10.1039/C0CS00062K. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...