Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects

. 2022 Feb 14 ; 23 (4) : . [epub] 20220214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35216229

Grantová podpora
COST LTC19049 Ministry of Education, Youth and Sports of the Czech Republic
20-21421S Czech Science Foundation
CZ.02.1.01/0.0/0.0/17_048/0007411 ERDF/ESF
LM2018124 Ministry of Education, Youth and Sports of the Czech Republic
CA17140 European Cooperation in Science and Technology
LM2018124 Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001821 Ministry of Education, Youth and Sports of the Czech Republic

Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.

Zobrazit více v PubMed

Filipczak N., Pan J., Yalamarty S.S.K., Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020;156:4–22. doi: 10.1016/j.addr.2020.06.022. PubMed DOI

Soussan E., Cassel S., Blanzat M., Rico-Lattes I. Drug delivery by soft matter: Matrix and vesicular carriers. Angew. Chem. Int. Ed. 2009;48:274–288. doi: 10.1002/anie.200802453. PubMed DOI

Thota B.N.S., Urner L.H., Haag R. Supramolecular architectures of dendritic amphiphiles in water. Chem. Rev. 2016;116:2079–2102. doi: 10.1021/acs.chemrev.5b00417. PubMed DOI

Ramanathan M., Shrestha L.K., Mori T., Ji Q., Hill J.P., Ariga K. Amphiphile nanoarchitectonics: From basic physical chemistry to advanced applications. Phys. Chem. Chem. Phys. 2013;15:10580–10611. doi: 10.1039/c3cp50620g. PubMed DOI

Eivazihollagh A., Svanedal I., Edlund H., Norgren M. On chelating surfactants: Molecular perspectives and application prospects. J. Mol. Liq. 2019;278:688–705. doi: 10.1016/j.molliq.2019.01.076. DOI

Polarz S., Landsmann S., Klaiber A. Hybrid Surfactant Systems with Inorganic Constituents. Angew. Chem. Int. Ed. 2014;53:946–954. doi: 10.1002/anie.201303159. PubMed DOI

Tevet S., Wagle S.S., Slor G., Amir R.J. Tuning the Reactivity of Micellar Nanoreactors by Precise Adjustments of the Amphiphile and Substrate Hydrophobicity. Macromolecules. 2021;54:11419–11426. doi: 10.1021/acs.macromol.1c01755. PubMed DOI PMC

Puras G., Mashal M., Zárate J., Agirre M., Ojeda E., Grijalvo S., Eritja R., Diaz-Tahoces A., Martínez Navarrete G., Avilés-Trigueros M., et al. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release. 2014;174:27–36. doi: 10.1016/j.jconrel.2013.11.004. PubMed DOI

Dailing E.A., Kilchrist K.V., Tierney J.W., Fletcher R.B., Evans B.C., Duvall C.L. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides. ACS Appl. Mater. Interfaces. 2020;12:50222–50235. doi: 10.1021/acsami.0c13304. PubMed DOI PMC

Kalhapure R.S., Jadhav M., Rambharose S., Mocktar C., Singh S., Renukuntla J., Govender T. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids Surf. B Biointerfaces. 2017;158:650–657. doi: 10.1016/j.colsurfb.2017.07.049. PubMed DOI

Astruc D., Boisselier E., Ornelas C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010;110:1857–1959. doi: 10.1021/cr900327d. PubMed DOI

Apartsin E., Caminade A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chem. A Eur. J. 2021;27:1–24. doi: 10.1002/chem.202102589. PubMed DOI PMC

Chen J., Ellert-Miklaszewska A., Garofalo S., Dey A.K., Tang J., Jiang Y., Clément F., Marche P.N., Liu X., Kaminska B., et al. Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat. Protoc. 2021;16:327–351. doi: 10.1038/s41596-020-00418-9. PubMed DOI PMC

Lyu Z., Ding L., Huang A.Y.T., Kao C.L., Peng L. Poly(amidoamine)dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem. 2019;13:34–48. doi: 10.1016/j.mtchem.2019.04.004. DOI

Nierengarten J.-F., Eckert J.-F., Rio Y., del Pilar Carreon M., Gallani J.-L., Guillon D. Amphiphilic Diblock Dendrimers:  Synthesis and Incorporation in Langmuir and Langmuir−Blodgett Films. J. Am. Chem. Soc. 2001;123:9743–9748. doi: 10.1021/ja010155m. PubMed DOI

Hawker C.J., Fréchet J.M.J. Unusual Macromolecular Architectures: The Convergent Growth Approach to Dendritic Polyesters and Novel Block Copolymers. J. Am. Chem. Soc. 1992;114:8405–8413. doi: 10.1021/ja00048a009. DOI

Zibarov A., Oukhrib A., Aujard Catot J., Turrin C.-O., Caminade A. AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules. 2021;26:4017. doi: 10.3390/molecules26134017. PubMed DOI PMC

Keller M., Collière V., Reiser O., Caminade A.M., Majoral J.P., Ouali A. Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: An efficient and recyclable system for drug synthesis. Angew. Chem. Int. Ed. 2013;52:3626–3629. doi: 10.1002/anie.201209969. PubMed DOI

Qiu J., Chen L., Zhan M., Laurent R., Bignon J., Mignani S., Shi X., Caminade A.M., Majoral J.P. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjug. Chem. 2021;32:339–349. doi: 10.1021/acs.bioconjchem.0c00716. PubMed DOI

Krasheninina O.A., Apartsin E.K., Fuentes E., Szulc A., Ionov M., Venyaminova A.G., Shcharbin D., de la Mata F.J., Bryszewska M., Gómez R. Complexes of pro-apoptotic sirnas and carbosilane dendrimers: Formation and effect on cancer cells. Pharmaceutics. 2019;11:25. doi: 10.3390/pharmaceutics11010025. PubMed DOI PMC

Gutierrez-Ulloa C.E., Buyanova M.Y., Apartsin E.K., Venyaminova A.G., De La Mata F.J., Valiente M., Gómez R. Amphiphilic carbosilane dendrons as a novel synthetic platform toward micelle formation. Org. Biomol. Chem. 2017;15:7352–7364. doi: 10.1039/C7OB01331K. PubMed DOI

Yang S.K., Zimmerman S.C. Water-soluble polyglycerol dendrimers with two orthogonally reactive core functional groups for one-pot functionalization. Macromolecules. 2015;48:2504–2508. doi: 10.1021/acs.macromol.5b00164. PubMed DOI PMC

Zhang S., Moussodia R.O., Sun H.J., Leowanawat P., Muncan A., Nusbaum C.D., Chelling K.M., Heiney P.A., Klein M.L., André S., et al. Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers. Angew. Chem. Int. Ed. 2014;53:10899–10903. doi: 10.1002/anie.201403186. PubMed DOI

Xiao Q., Ludwig A.K., Romanò C., Buzzacchera I., Sherman S.E., Vetro M., Vértesy S., Kaltner H., Reed E.H., Möller M., et al. Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc. Natl. Acad. Sci. USA. 2018;115:E2509–E2518. doi: 10.1073/pnas.1720055115. PubMed DOI PMC

Xiao Q., Sherman S.E., Wilner S.E., Zhou X., Dazen C., Baumgart T., Reed E.H., Hammer D.A., Shinoda W., Klein M.L., et al. Janus dendrimersomes coassembled from fluorinated, hydrogenated, and hybrid Janus dendrimers as models for cell fusion and fission. Proc. Natl. Acad. Sci. USA. 2017;114:E7045–E7053. doi: 10.1073/pnas.1708380114. PubMed DOI PMC

Xiao Q., Rubien J.D., Wang Z., Reed E.H., Hammer D.A., Sahoo D., Heiney P.A., Yadavalli S.S., Goulian M., Wilner S.E., et al. Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimersomes. J. Am. Chem. Soc. 2016;138:12655–12663. doi: 10.1021/jacs.6b08069. PubMed DOI PMC

Krupková A., Kubátová K., Šťastná L.Č., Cuřínová P., Müllerová M., Karban J., Čermák J., Strašák T. Poly(Imidazolium) carbosilane dendrimers: Synthesis, catalytic activity in redox esterification of α,β-unsaturated aldehydes and recycling via organic solvent nanofiltration. Catalysts. 2021;11:1317. doi: 10.3390/catal11111317. DOI

Müllerová M., Maciel D., Nunes N., Wrobel D., Stofik M., Červenková Šťastná L., Krupková A., Cuřínová P., Nováková K., Božík M., et al. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules. 2021;23:276–290. doi: 10.1021/acs.biomac.1c01264. PubMed DOI

Herma R., Wrobel D., Liegertová M., Müllerová M., Strašák T., Maly M., Semerádtová A., Štofik M., Appelhans D., Maly J. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int. J. Pharm. 2019;562:51–65. doi: 10.1016/j.ijpharm.2019.03.018. PubMed DOI

Strašák T., Malý J., Wróbel D., Malý M., Herma R., Čermák J., Müllerová M., Št′astná L.Č., Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications-synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017;7:18724–18744. doi: 10.1039/C7RA01845B. DOI

Liegertová M., Wrobel D., Herma R., Müllerová M., Šťastná L.Č., Cuřínová P., Strašák T., Malý M., Čermák J., Smejkal J., et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology. 2018;12:1–22. doi: 10.1080/17435390.2018.1475582. PubMed DOI

Ordanini S., Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics. 2018;10:209. doi: 10.3390/pharmaceutics10040209. PubMed DOI PMC

Sherman S.E., Xiao Q., Percec V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem. Rev. 2017;117:6538–6631. doi: 10.1021/acs.chemrev.7b00097. PubMed DOI

Franc G., Kakkar A.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 2010;39:1536–1544. doi: 10.1039/b913281n. PubMed DOI

Marchetti P., Jimenez Solomon M.F., Szekely G., Livingston A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014;114:10735–10806. doi: 10.1021/cr500006j. PubMed DOI

Shende V.S., Saptal V.B., Bhanage B.M. Recent Advances Utilized in the Recycling of Homogeneous Catalysis. Chem. Rec. 2019:1–23. doi: 10.1002/tcr.201800205. PubMed DOI

Vandezande P., Gevers L.E.M., Vankelecom I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008;37:365–405. doi: 10.1039/B610848M. PubMed DOI

Cuřínová P., Winkler M., Krupková A., Císařová I., Budka J., Wun C.N., Blechta V., Malý M., Červenková Št’astná L., Sýkora J., et al. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS Omega. 2021;6:15514–15522. doi: 10.1021/acsomega.1c02142. PubMed DOI PMC

Červenková Št’astná L., Krupková A., Petrickovic R., Müllerová M., Matoušek J., Koštejn M., Cuřínová P., Jandová V., Šabata S., Strašák T. Multivalent Bifunctional Carbosilane Dendrimer-Supported Ammonium and Phosphonium Organocatalysts for the Coupling of CO2 and Epoxides. ACS Sustain. Chem. Eng. 2020;8:11692–11703. doi: 10.1021/acssuschemeng.0c03367. DOI

Gong C., Glass T.E., Gibson H.W. Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures. Macromolecules. 1998;31:308–313. doi: 10.1021/ma970812o. DOI

Uno M., Ban H.S., Nabeyama W., Nakamura H. de novo Design and synthesis of N-benzylanilines as new candidates for VEGFR tyrosine kinase inhibitors. Org. Biomol. Chem. 2008;6:979. doi: 10.1039/b719959g. PubMed DOI

Ahmad I., Falck-Pedersen M.L., Undheim K. Synthesis of silacycloalkenes and silaspirenes by Ru(II)-catalyzed ring-closing metathesis reactions. J. Organomet. Chem. 2001;625:160–172. doi: 10.1016/S0022-328X(00)00818-4. DOI

Favre A., Grugier J., Brans A., Joris B., Marchand-Brynaert J. 6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron. 2012;68:10818–10826. doi: 10.1016/j.tet.2011.10.100. DOI

Bayly C.I., Cieplak P., Cornell W., Kollman P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993;97:10269–10280. doi: 10.1021/j100142a004. DOI

Vanquelef E., Simon S., Marquant G., Garcia E., Klimerak G., Delepine J.C., Cieplak P., Dupradeau F.-Y. R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011;39:W511–W517. doi: 10.1093/nar/gkr288. PubMed DOI PMC

Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI

Gordon M.S., Schmidt M.W. Theory and Applications of Computational Chemistry. Elsevier; Amsterdam, The Netherlands: 2005. Advances in electronic structure theory; pp. 1167–1189.

Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Case D.A., Brozell S.R., Cerutti D.S., Cheatham T.E., III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gohlke H., Goetz A.W., et al. AMBER. 2018. [(accessed on 13 January 2022)]. Available online: https://ambermd.org/doc12/Amber18.pdf.

Lii J.-H., Allinger N.L. The MM3 force field for amides, polypeptides and proteins. J. Comput. Chem. 1991;12:186–199. doi: 10.1002/jcc.540120208. DOI

Martínez L., Andrade R., Birgin E.G., Martínez J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Ryckaert J.-P., Ciccotti G., Berendsen H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Wu X., Brooks B.R., Vanden-Eijnden E. Self-guided Langevin dynamics via generalized Langevin equation. J. Comput. Chem. 2016;37:595–601. doi: 10.1002/jcc.24015. PubMed DOI PMC

Götz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., Walker R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012;8:1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Yin Win K., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI

Guo X., Wei X., Chen Z., Zhang X., Yang G., Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 2020;107:100599. doi: 10.1016/j.pmatsci.2019.100599. DOI

Kheraldine H., Rachid O., Habib A.M., Al Moustafa A.E., Benter I.F., Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv. Drug Deliv. Rev. 2021;178:113908. doi: 10.1016/j.addr.2021.113908. PubMed DOI

Lee A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta Biomembr. 2004;1666:62–87. doi: 10.1016/j.bbamem.2004.05.012. PubMed DOI

Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey H., Weener J.W., Meijer E.W., Paulus W., Duncan R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release. 2000;65:133–148. doi: 10.1016/S0168-3659(99)00246-1. PubMed DOI

Shao X.-R., Wei X.-Q., Song X., Hao L.-Y., Cai X.-X., Zhang Z.-R., Peng Q., Lin Y.-F. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48:465–474. doi: 10.1111/cpr.12192. PubMed DOI PMC

Ziemba B., Janaszewska A., Ciepluch K., Krotewicz M., Fogel W.A., Appelhans D., Voit B., Bryszewska M., Klajnert B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. Part A. 2011;99A:261–268. doi: 10.1002/jbm.a.33196. PubMed DOI

Nagarajan R., editor. Self-Assembly: From Surfactants to Nanoparticles. John Wiley&Sons, Inc.; Hoboken, NJ, USA: 2018.

Xu L., Shao L., Chen L., Hu M., Bi Y. Synthesis and Solution Properties of a Novel Thermosensitive Poly(benzyl ether) Dendron with Oligoethyleneoxy Chains at the Periphery. Chem. Lett. 2010;39:1177–1179. doi: 10.1246/cl.2010.1177. DOI

Xiang S., Wagner J., Lückerath T., Müllen K., Ng D.Y.W., Hedrich J., Weil T. Reversing A β Fibrillation and Inhibiting A β Primary Neuronal Cell Toxicity Using Amphiphilic Polyphenylene Dendrons. Adv. Healthc. Mater. 2021:2101854. doi: 10.1002/adhm.202101854. PubMed DOI PMC

Liu J., Peng F., Kang Y., Gong D., Fan J., Zhang W., Qiu F. High-Loading Self-Assembling Peptide Nanoparticles as a Lipid-Free Carrier for Hydrophobic General Anesthetics. Int. J. Nanomed. 2021;16:5317. doi: 10.2147/IJN.S315310. PubMed DOI PMC

Simms B.L., Ji N., Chandrasiri I., Zia M.F., Udemgba C.S., Kaur R., Delcamp J.H., Flynt A., Tan C., Watkins D.L. Physicochemical properties and bio-interfacial interactions of surface modified PDLLA-PAMAM linear dendritic block copolymers. J. Polym. Sci. 2021;59:2177–2192. doi: 10.1002/pol.20210448. DOI

Chandrasiri I., Abebe D.G., Loku Yaddehige M., Williams J.S.D., Zia M.F., Dorris A., Barker A., Simms B.L., Parker A., Vinjamuri B.P., et al. Self-Assembling PCL-PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS Appl. Bio Mater. 2020;3:5664–5677. doi: 10.1021/acsabm.0c00432. PubMed DOI

Manunta M., Tan P.H., Sagoo P., Kashe K., George A.J.T. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res. 2004;32:2730–2739. doi: 10.1093/nar/gkh595. PubMed DOI PMC

Tan Q.Y., Wang N., Yang H., Chen L., Xiong H.R., Zhang L.K., Liu J., Zhao C.J., Zhang J.Q. Preparation and characterization of lipid vesicles containing uricase. Drug Deliv. 2010;17:28–37. doi: 10.3109/10717540903508953. PubMed DOI

Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003;261:402–410. doi: 10.1016/S0021-9797(03)00142-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...