Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
COST LTC19049
Ministry of Education, Youth and Sports of the Czech Republic
20-21421S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/17_048/0007411
ERDF/ESF
LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
CA17140
European Cooperation in Science and Technology
LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35216229
PubMed Central
PMC8877797
DOI
10.3390/ijms23042114
PII: ijms23042114
Knihovny.cz E-zdroje
- Klíčová slova
- DLS, amphiphiles, carbosilane, computer modeling, dendrons, micelles, molecular dynamics, zeta potential,
- MeSH
- anthraceny chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- micely MeSH
- nanočástice chemie MeSH
- počítačová simulace MeSH
- silany chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthraceny MeSH
- carbosilane MeSH Prohlížeč
- dendron MeSH Prohlížeč
- micely MeSH
- silany MeSH
- voda MeSH
Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.
Zobrazit více v PubMed
Filipczak N., Pan J., Yalamarty S.S.K., Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020;156:4–22. doi: 10.1016/j.addr.2020.06.022. PubMed DOI
Soussan E., Cassel S., Blanzat M., Rico-Lattes I. Drug delivery by soft matter: Matrix and vesicular carriers. Angew. Chem. Int. Ed. 2009;48:274–288. doi: 10.1002/anie.200802453. PubMed DOI
Thota B.N.S., Urner L.H., Haag R. Supramolecular architectures of dendritic amphiphiles in water. Chem. Rev. 2016;116:2079–2102. doi: 10.1021/acs.chemrev.5b00417. PubMed DOI
Ramanathan M., Shrestha L.K., Mori T., Ji Q., Hill J.P., Ariga K. Amphiphile nanoarchitectonics: From basic physical chemistry to advanced applications. Phys. Chem. Chem. Phys. 2013;15:10580–10611. doi: 10.1039/c3cp50620g. PubMed DOI
Eivazihollagh A., Svanedal I., Edlund H., Norgren M. On chelating surfactants: Molecular perspectives and application prospects. J. Mol. Liq. 2019;278:688–705. doi: 10.1016/j.molliq.2019.01.076. DOI
Polarz S., Landsmann S., Klaiber A. Hybrid Surfactant Systems with Inorganic Constituents. Angew. Chem. Int. Ed. 2014;53:946–954. doi: 10.1002/anie.201303159. PubMed DOI
Tevet S., Wagle S.S., Slor G., Amir R.J. Tuning the Reactivity of Micellar Nanoreactors by Precise Adjustments of the Amphiphile and Substrate Hydrophobicity. Macromolecules. 2021;54:11419–11426. doi: 10.1021/acs.macromol.1c01755. PubMed DOI PMC
Puras G., Mashal M., Zárate J., Agirre M., Ojeda E., Grijalvo S., Eritja R., Diaz-Tahoces A., Martínez Navarrete G., Avilés-Trigueros M., et al. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release. 2014;174:27–36. doi: 10.1016/j.jconrel.2013.11.004. PubMed DOI
Dailing E.A., Kilchrist K.V., Tierney J.W., Fletcher R.B., Evans B.C., Duvall C.L. Modifying Cell Membranes with Anionic Polymer Amphiphiles Potentiates Intracellular Delivery of Cationic Peptides. ACS Appl. Mater. Interfaces. 2020;12:50222–50235. doi: 10.1021/acsami.0c13304. PubMed DOI PMC
Kalhapure R.S., Jadhav M., Rambharose S., Mocktar C., Singh S., Renukuntla J., Govender T. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids Surf. B Biointerfaces. 2017;158:650–657. doi: 10.1016/j.colsurfb.2017.07.049. PubMed DOI
Astruc D., Boisselier E., Ornelas C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010;110:1857–1959. doi: 10.1021/cr900327d. PubMed DOI
Apartsin E., Caminade A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chem. A Eur. J. 2021;27:1–24. doi: 10.1002/chem.202102589. PubMed DOI PMC
Chen J., Ellert-Miklaszewska A., Garofalo S., Dey A.K., Tang J., Jiang Y., Clément F., Marche P.N., Liu X., Kaminska B., et al. Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat. Protoc. 2021;16:327–351. doi: 10.1038/s41596-020-00418-9. PubMed DOI PMC
Lyu Z., Ding L., Huang A.Y.T., Kao C.L., Peng L. Poly(amidoamine)dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem. 2019;13:34–48. doi: 10.1016/j.mtchem.2019.04.004. DOI
Nierengarten J.-F., Eckert J.-F., Rio Y., del Pilar Carreon M., Gallani J.-L., Guillon D. Amphiphilic Diblock Dendrimers: Synthesis and Incorporation in Langmuir and Langmuir−Blodgett Films. J. Am. Chem. Soc. 2001;123:9743–9748. doi: 10.1021/ja010155m. PubMed DOI
Hawker C.J., Fréchet J.M.J. Unusual Macromolecular Architectures: The Convergent Growth Approach to Dendritic Polyesters and Novel Block Copolymers. J. Am. Chem. Soc. 1992;114:8405–8413. doi: 10.1021/ja00048a009. DOI
Zibarov A., Oukhrib A., Aujard Catot J., Turrin C.-O., Caminade A. AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules. 2021;26:4017. doi: 10.3390/molecules26134017. PubMed DOI PMC
Keller M., Collière V., Reiser O., Caminade A.M., Majoral J.P., Ouali A. Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: An efficient and recyclable system for drug synthesis. Angew. Chem. Int. Ed. 2013;52:3626–3629. doi: 10.1002/anie.201209969. PubMed DOI
Qiu J., Chen L., Zhan M., Laurent R., Bignon J., Mignani S., Shi X., Caminade A.M., Majoral J.P. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjug. Chem. 2021;32:339–349. doi: 10.1021/acs.bioconjchem.0c00716. PubMed DOI
Krasheninina O.A., Apartsin E.K., Fuentes E., Szulc A., Ionov M., Venyaminova A.G., Shcharbin D., de la Mata F.J., Bryszewska M., Gómez R. Complexes of pro-apoptotic sirnas and carbosilane dendrimers: Formation and effect on cancer cells. Pharmaceutics. 2019;11:25. doi: 10.3390/pharmaceutics11010025. PubMed DOI PMC
Gutierrez-Ulloa C.E., Buyanova M.Y., Apartsin E.K., Venyaminova A.G., De La Mata F.J., Valiente M., Gómez R. Amphiphilic carbosilane dendrons as a novel synthetic platform toward micelle formation. Org. Biomol. Chem. 2017;15:7352–7364. doi: 10.1039/C7OB01331K. PubMed DOI
Yang S.K., Zimmerman S.C. Water-soluble polyglycerol dendrimers with two orthogonally reactive core functional groups for one-pot functionalization. Macromolecules. 2015;48:2504–2508. doi: 10.1021/acs.macromol.5b00164. PubMed DOI PMC
Zhang S., Moussodia R.O., Sun H.J., Leowanawat P., Muncan A., Nusbaum C.D., Chelling K.M., Heiney P.A., Klein M.L., André S., et al. Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers. Angew. Chem. Int. Ed. 2014;53:10899–10903. doi: 10.1002/anie.201403186. PubMed DOI
Xiao Q., Ludwig A.K., Romanò C., Buzzacchera I., Sherman S.E., Vetro M., Vértesy S., Kaltner H., Reed E.H., Möller M., et al. Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc. Natl. Acad. Sci. USA. 2018;115:E2509–E2518. doi: 10.1073/pnas.1720055115. PubMed DOI PMC
Xiao Q., Sherman S.E., Wilner S.E., Zhou X., Dazen C., Baumgart T., Reed E.H., Hammer D.A., Shinoda W., Klein M.L., et al. Janus dendrimersomes coassembled from fluorinated, hydrogenated, and hybrid Janus dendrimers as models for cell fusion and fission. Proc. Natl. Acad. Sci. USA. 2017;114:E7045–E7053. doi: 10.1073/pnas.1708380114. PubMed DOI PMC
Xiao Q., Rubien J.D., Wang Z., Reed E.H., Hammer D.A., Sahoo D., Heiney P.A., Yadavalli S.S., Goulian M., Wilner S.E., et al. Self-Sorting and Coassembly of Fluorinated, Hydrogenated, and Hybrid Janus Dendrimers into Dendrimersomes. J. Am. Chem. Soc. 2016;138:12655–12663. doi: 10.1021/jacs.6b08069. PubMed DOI PMC
Krupková A., Kubátová K., Šťastná L.Č., Cuřínová P., Müllerová M., Karban J., Čermák J., Strašák T. Poly(Imidazolium) carbosilane dendrimers: Synthesis, catalytic activity in redox esterification of α,β-unsaturated aldehydes and recycling via organic solvent nanofiltration. Catalysts. 2021;11:1317. doi: 10.3390/catal11111317. DOI
Müllerová M., Maciel D., Nunes N., Wrobel D., Stofik M., Červenková Šťastná L., Krupková A., Cuřínová P., Nováková K., Božík M., et al. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules. 2021;23:276–290. doi: 10.1021/acs.biomac.1c01264. PubMed DOI
Herma R., Wrobel D., Liegertová M., Müllerová M., Strašák T., Maly M., Semerádtová A., Štofik M., Appelhans D., Maly J. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int. J. Pharm. 2019;562:51–65. doi: 10.1016/j.ijpharm.2019.03.018. PubMed DOI
Strašák T., Malý J., Wróbel D., Malý M., Herma R., Čermák J., Müllerová M., Št′astná L.Č., Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications-synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017;7:18724–18744. doi: 10.1039/C7RA01845B. DOI
Liegertová M., Wrobel D., Herma R., Müllerová M., Šťastná L.Č., Cuřínová P., Strašák T., Malý M., Čermák J., Smejkal J., et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology. 2018;12:1–22. doi: 10.1080/17435390.2018.1475582. PubMed DOI
Ordanini S., Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics. 2018;10:209. doi: 10.3390/pharmaceutics10040209. PubMed DOI PMC
Sherman S.E., Xiao Q., Percec V. Mimicking complex biological membranes and their programmable glycan ligands with dendrimersomes and glycodendrimersomes. Chem. Rev. 2017;117:6538–6631. doi: 10.1021/acs.chemrev.7b00097. PubMed DOI
Franc G., Kakkar A.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 2010;39:1536–1544. doi: 10.1039/b913281n. PubMed DOI
Marchetti P., Jimenez Solomon M.F., Szekely G., Livingston A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014;114:10735–10806. doi: 10.1021/cr500006j. PubMed DOI
Shende V.S., Saptal V.B., Bhanage B.M. Recent Advances Utilized in the Recycling of Homogeneous Catalysis. Chem. Rec. 2019:1–23. doi: 10.1002/tcr.201800205. PubMed DOI
Vandezande P., Gevers L.E.M., Vankelecom I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008;37:365–405. doi: 10.1039/B610848M. PubMed DOI
Cuřínová P., Winkler M., Krupková A., Císařová I., Budka J., Wun C.N., Blechta V., Malý M., Červenková Št’astná L., Sýkora J., et al. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS Omega. 2021;6:15514–15522. doi: 10.1021/acsomega.1c02142. PubMed DOI PMC
Červenková Št’astná L., Krupková A., Petrickovic R., Müllerová M., Matoušek J., Koštejn M., Cuřínová P., Jandová V., Šabata S., Strašák T. Multivalent Bifunctional Carbosilane Dendrimer-Supported Ammonium and Phosphonium Organocatalysts for the Coupling of CO2 and Epoxides. ACS Sustain. Chem. Eng. 2020;8:11692–11703. doi: 10.1021/acssuschemeng.0c03367. DOI
Gong C., Glass T.E., Gibson H.W. Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures. Macromolecules. 1998;31:308–313. doi: 10.1021/ma970812o. DOI
Uno M., Ban H.S., Nabeyama W., Nakamura H. de novo Design and synthesis of N-benzylanilines as new candidates for VEGFR tyrosine kinase inhibitors. Org. Biomol. Chem. 2008;6:979. doi: 10.1039/b719959g. PubMed DOI
Ahmad I., Falck-Pedersen M.L., Undheim K. Synthesis of silacycloalkenes and silaspirenes by Ru(II)-catalyzed ring-closing metathesis reactions. J. Organomet. Chem. 2001;625:160–172. doi: 10.1016/S0022-328X(00)00818-4. DOI
Favre A., Grugier J., Brans A., Joris B., Marchand-Brynaert J. 6-Aminopenicillanic acid (6-APA) derivatives equipped with anchoring arms. Tetrahedron. 2012;68:10818–10826. doi: 10.1016/j.tet.2011.10.100. DOI
Bayly C.I., Cieplak P., Cornell W., Kollman P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993;97:10269–10280. doi: 10.1021/j100142a004. DOI
Vanquelef E., Simon S., Marquant G., Garcia E., Klimerak G., Delepine J.C., Cieplak P., Dupradeau F.-Y. R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011;39:W511–W517. doi: 10.1093/nar/gkr288. PubMed DOI PMC
Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI
Gordon M.S., Schmidt M.W. Theory and Applications of Computational Chemistry. Elsevier; Amsterdam, The Netherlands: 2005. Advances in electronic structure theory; pp. 1167–1189.
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Case D.A., Brozell S.R., Cerutti D.S., Cheatham T.E., III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gohlke H., Goetz A.W., et al. AMBER. 2018. [(accessed on 13 January 2022)]. Available online: https://ambermd.org/doc12/Amber18.pdf.
Lii J.-H., Allinger N.L. The MM3 force field for amides, polypeptides and proteins. J. Comput. Chem. 1991;12:186–199. doi: 10.1002/jcc.540120208. DOI
Martínez L., Andrade R., Birgin E.G., Martínez J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Ryckaert J.-P., Ciccotti G., Berendsen H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Wu X., Brooks B.R., Vanden-Eijnden E. Self-guided Langevin dynamics via generalized Langevin equation. J. Comput. Chem. 2016;37:595–601. doi: 10.1002/jcc.24015. PubMed DOI PMC
Götz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., Walker R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012;8:1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Yin Win K., Feng S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722. doi: 10.1016/j.biomaterials.2004.07.050. PubMed DOI
Guo X., Wei X., Chen Z., Zhang X., Yang G., Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci. 2020;107:100599. doi: 10.1016/j.pmatsci.2019.100599. DOI
Kheraldine H., Rachid O., Habib A.M., Al Moustafa A.E., Benter I.F., Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv. Drug Deliv. Rev. 2021;178:113908. doi: 10.1016/j.addr.2021.113908. PubMed DOI
Lee A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta Biomembr. 2004;1666:62–87. doi: 10.1016/j.bbamem.2004.05.012. PubMed DOI
Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey H., Weener J.W., Meijer E.W., Paulus W., Duncan R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release. 2000;65:133–148. doi: 10.1016/S0168-3659(99)00246-1. PubMed DOI
Shao X.-R., Wei X.-Q., Song X., Hao L.-Y., Cai X.-X., Zhang Z.-R., Peng Q., Lin Y.-F. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48:465–474. doi: 10.1111/cpr.12192. PubMed DOI PMC
Ziemba B., Janaszewska A., Ciepluch K., Krotewicz M., Fogel W.A., Appelhans D., Voit B., Bryszewska M., Klajnert B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. Part A. 2011;99A:261–268. doi: 10.1002/jbm.a.33196. PubMed DOI
Nagarajan R., editor. Self-Assembly: From Surfactants to Nanoparticles. John Wiley&Sons, Inc.; Hoboken, NJ, USA: 2018.
Xu L., Shao L., Chen L., Hu M., Bi Y. Synthesis and Solution Properties of a Novel Thermosensitive Poly(benzyl ether) Dendron with Oligoethyleneoxy Chains at the Periphery. Chem. Lett. 2010;39:1177–1179. doi: 10.1246/cl.2010.1177. DOI
Xiang S., Wagner J., Lückerath T., Müllen K., Ng D.Y.W., Hedrich J., Weil T. Reversing A β Fibrillation and Inhibiting A β Primary Neuronal Cell Toxicity Using Amphiphilic Polyphenylene Dendrons. Adv. Healthc. Mater. 2021:2101854. doi: 10.1002/adhm.202101854. PubMed DOI PMC
Liu J., Peng F., Kang Y., Gong D., Fan J., Zhang W., Qiu F. High-Loading Self-Assembling Peptide Nanoparticles as a Lipid-Free Carrier for Hydrophobic General Anesthetics. Int. J. Nanomed. 2021;16:5317. doi: 10.2147/IJN.S315310. PubMed DOI PMC
Simms B.L., Ji N., Chandrasiri I., Zia M.F., Udemgba C.S., Kaur R., Delcamp J.H., Flynt A., Tan C., Watkins D.L. Physicochemical properties and bio-interfacial interactions of surface modified PDLLA-PAMAM linear dendritic block copolymers. J. Polym. Sci. 2021;59:2177–2192. doi: 10.1002/pol.20210448. DOI
Chandrasiri I., Abebe D.G., Loku Yaddehige M., Williams J.S.D., Zia M.F., Dorris A., Barker A., Simms B.L., Parker A., Vinjamuri B.P., et al. Self-Assembling PCL-PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS Appl. Bio Mater. 2020;3:5664–5677. doi: 10.1021/acsabm.0c00432. PubMed DOI
Manunta M., Tan P.H., Sagoo P., Kashe K., George A.J.T. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res. 2004;32:2730–2739. doi: 10.1093/nar/gkh595. PubMed DOI PMC
Tan Q.Y., Wang N., Yang H., Chen L., Xiong H.R., Zhang L.K., Liu J., Zhao C.J., Zhang J.Q. Preparation and characterization of lipid vesicles containing uricase. Drug Deliv. 2010;17:28–37. doi: 10.3109/10717540903508953. PubMed DOI
Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003;261:402–410. doi: 10.1016/S0021-9797(03)00142-5. PubMed DOI