PURPOSE: The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS: HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS: Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1β, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION: These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.
- MeSH
- anthrachinony * MeSH
- antiflogistika farmakologie MeSH
- glukosidy * MeSH
- kultivované buňky MeSH
- lidé MeSH
- luteolin * MeSH
- osteogeneze * fyziologie MeSH
- oxid hořečnatý MeSH
- pyruvaldehyd * toxicita MeSH
- reaktivní formy kyslíku MeSH
- zánět chemicky indukované farmakoterapie MeSH
- zubní dřeň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.
- MeSH
- antivirové látky farmakologie chemie MeSH
- COVID-19 * MeSH
- kočky MeSH
- perylen * farmakologie MeSH
- reaktivní formy kyslíku MeSH
- SARS-CoV-2 MeSH
- singletový kyslík MeSH
- virion MeSH
- virový obal MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.
- MeSH
- ABC transportér z rodiny G, člen 2 antagonisté a inhibitory genetika metabolismus MeSH
- buňky MDCK MeSH
- cytochrom P-450 CYP3A genetika metabolismus MeSH
- daunomycin aplikace a dávkování farmakologie MeSH
- imidazoly aplikace a dávkování farmakokinetika MeSH
- inhibitory cytochromu P450 aplikace a dávkování farmakologie MeSH
- kombinovaná farmakoterapie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mitoxantron aplikace a dávkování farmakologie MeSH
- nádorové buněčné linie MeSH
- oximy aplikace a dávkování farmakokinetika MeSH
- P-glykoprotein antagonisté a inhibitory genetika metabolismus MeSH
- protinádorové látky aplikace a dávkování farmakologie MeSH
- psi MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lysosomes, now known to take part in multiple cellular functions, also respond to various stress stimuli. These include biogenesis in response to nanomolar concentrations of hydrophobic weak-base anticancer drugs. However, since lysosomal stress mediated by accumulation of weak-base drugs at such concentrations has never been proven and these drugs have diverse effects on malignant cells, we investigated whether the interpretation of the data was true. We found that lysosomal accumulation of the drugs daunorubicin, doxorubicin, mitoxantrone, symadex, chloroquine, clomipramine and sunitinib alone, was insufficient to induce lysosomal alkalization i.e., lysosomal stress-mediated biogenesis at nanomolar concentrations. Instead, we found that some of the drugs used induced G2 phase arrest and lysosomal biogenesis that is associated with activation of transcription factor EB (TFEB). Similarly, cantharidin, a control compound that does not belong to the weak base drugs, induced cell cycle arrest in the G2 phase associated with TFEB-driven lysosomal biogenesis. Overall none of the tested drugs caused stress-induced lysosomal biogenesis at nanomolar concentrations. However, daunorubicin, doxorubicin, mitoxantrone, symadex and cantharidin induced a massive block in the G2 phase of the cell cycle which is naturally associated with TFEB-driven lysosomal biogenesis.
Actinomycete strain YIM PH20352, isolated from the rhizosphere soil sample of Panax notoginseng collected in WenShang, Yunnan Province, China, exhibited antifungal activity against some phytopathogenic fungi. The structures of bioactive molecules, isolated from the ethyl acetate extract of the fermentation broth of the strain, were identified as rabelomycin (1) and dehydrorabelomycin (2) based on extensive spectroscopic analyses. Compound 1 exhibited antifungal activity against four tested root-rot pathogens of the Panax notoginseng including Plectosphaerella cucumerina, Alternaria panax, Fusarium oxysporum, and Fusarium solani with the MIC values at 32, 64, 128, and 128 μg/mL, respectively. Compound 2 exhibited antifungal activity against F. oxysporum, P. cucumerina, F. solani, and A. panax with the MIC values at 64, 64, 128, and 128 μg/mL, respectively. Based on the phylogenetic analyses, the closest phylogenetic relative of strain YIM PH20352 is Streptomyces cellulosae NBRC 13027 T (AB184265) (99.88%), so strain YIM PH20352 was identified as Streptomyces cellulosae. To the best of our knowledge, this is the first report of rabelomycin and rabelomycin-type antibiotics from Streptomyces cellulosae and their antifungal activity against root-rot pathogens of the Panax notoginseng.
- MeSH
- anthrachinony MeSH
- antifungální látky chemie MeSH
- fylogeneze MeSH
- houby MeSH
- nemoci rostlin mikrobiologie MeSH
- Panax notoginseng * mikrobiologie MeSH
- půda * MeSH
- Streptomyces MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
Microbial strains isolated from extreme and understudied environments, such as caves, are still poorly investigated for the production of bioactive secondary metabolites. Investigation of the ethyl acetate extract from the growth medium produced by the soil-derived fungus Aspergillus sp. SDC28, isolated from a Brazilian cave, yielded two anthraquinones: versicolorin C (1) and versiconol (2). The complete assignment of nuclear magnetic resonance and mass spectroscopic data of 1 and 2 was performed for the first time. Moreover, the yet unreported absolute configuration of both compounds was unambiguously established by analysis of experimental and theoretical electronic circular dichroism data. Vibrational circular dichroism was also applied to confirm the absolute stereochemistry of 2. Compounds 1 and 2 showed cytotoxic activity against human ovarian cancer cells (OVCAR3).
- MeSH
- anthrachinony farmakologie MeSH
- apoptóza MeSH
- Aspergillus chemie metabolismus MeSH
- cirkulární dichroismus MeSH
- jeskyně * MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- nádory vaječníků * MeSH
- oligodeoxyribonukleotidy MeSH
- půda MeSH
- thionukleotidy MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
A structure-activity relationship (SAR) study in terms of G-quadruplex binding ability and antiproliferative activity of six fluorescent perylenemonoimide (PMIs) derivatives is reported. A positive charge seems to be the key to target G4. This study also reveals the importance of the element substitution in the potential biological activity of PMIs, being the polyethylene glycol (PEG) chains in the peri position responsible for their antiproliferative activity. Among them, the cationic PMI6 with two PEG chains is the most promising compound since its fluorescence is enhanced in the presence of G-quadruplex structures. Moreover, PMI6 binds to the human telomeric G-quadruplex hTelo with high affinity and displays a high antiproliferative potential towards HeLa (cervical adenocarcinoma), A549 (lung adenocarcinoma) and A2780 (ovarian adenocarcinoma) cells. Its fate can be followed inside cells thanks to its fluorescent properties: the compound is found to accumulate in the mitochondria.
- MeSH
- G-kvadruplexy účinky léků MeSH
- imidy chemická syntéza chemie farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mitochondrie účinky léků MeSH
- molekulární struktura MeSH
- perylen analogy a deriváty chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.
- MeSH
- anthrachinony chemie MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky chemie farmakologie MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- perylen analogy a deriváty chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVE: The objective of this study was to investigate whether diacerein has comparable efficacy with celecoxib in pain reduction for treatment in symptomatic knee OA patients. METHODS: This randomized double-blind multicentre non-inferiority trial evaluated diacerein vs celecoxib treatment in patients with Kellgren-Lawrence grade 2-3 and pain scoring ≥4 (10-cm VAS). Patients were randomized to 6 months of treatment with diacerein 50 mg (n = 187) once daily for 1 month and twice daily thereafter, or celecoxib 200 mg (n = 193) once daily. The primary outcome was the change in WOMAC pain score (0-50 cm) at 6 months, and the secondary outcomes were WOMAC sub-scores, VAS pain score, and the OMERACT-OARSI responder rate. RESULTS: In the per protocol population, the adjusted mean change from baseline in the WOMAC pain score was -11.1 ( 0.9) with diacerein (n = 140) and -11.8 (0.9) with celecoxib (n = 148). The intergroup difference was 0.7 (95% CI: -1.8, 3.2; P = 0.597), meeting the non-inferiority margin. Supportive analysis of the intention-to-treat population gave similar results. Other outcomes showed no significant difference between treatment groups. The incidence of treatment-related adverse events was low and balanced between groups, but a greater incidence of diarrhoea occurred with diacerein (10.2% vs 3.7%). Diarrhoea was considered mild-to-moderate in all but one case with complete resolution. CONCLUSIONS: Diacerein was non-inferior to celecoxib in reducing knee OA pain and improving physical function. Diacerein also demonstrated a good safety profile. TRIAL REGISTRATION: A multicentre study on the effect of DIacerein on Structure and Symptoms vs Celecoxib in Osteoarthritis is a National Institutes of Health (NCT02688400) and European Clinical Trial Database (2015-002933-23) registered phase III (Canada) or IV (Europe) study.
- MeSH
- anthrachinony terapeutické užití MeSH
- antiflogistika nesteroidní terapeutické užití MeSH
- artralgie farmakoterapie MeSH
- artróza kolenních kloubů farmakoterapie MeSH
- celekoxib terapeutické užití MeSH
- dvojitá slepá metoda MeSH
- lidé středního věku MeSH
- lidé MeSH
- měření bolesti MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnocení ekvivalence MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
The adverse side effects and acquired resistance associated with the clinical application of traditional platinum-based anticancer drugs have forced investigation of alternative transition metal-based compounds and their cytostatic properties. Over the last years, the anticancer potential of cobalt complexes has been extensively studied, and in-depth analyses of their mode of action have been conducted. In this work, we present antiproliferative activity against human cancer cells of the dinuclear Co(III) complexes bearing the quinizarin ligand and tris(2-aminoethyl)amine (tren, compound 1) or tris(2-pyridylmethyl)amine (tpa, compound 2) co-ligands. To contribute the understanding mechanisms of biological action of these compounds, their association with DNA in the cells, DNA binding in cell-free media, and DNA cleavage capability were investigated in detail. The results demonstrate that both complexes interact with DNA in tumor cells. However, their mechanism of antiproliferative action is different, and this difference is mirrored by distinct antiproliferative activity. The antiproliferative effect of 1 is connected with its ability to intercalate into DNA and subsequently to inhibit activities of DNA processing enzymes. In contrast, the total antiproliferative efficiency of 2, thanks to its redox properties, appears to be connected with its ability to form radicals and, consequently, with the ability of 2 to cleave DNA. Hence, the findings presented in this study may significantly contribute to understanding the antitumor potential of cobalt complexes. Dinuclear Co(III) complexes containing the bioactive quinizarin ligand exhibit antiproliferative activity based on distinct mechanism.
- MeSH
- anthrachinony chemie farmakologie MeSH
- DNA chemie MeSH
- kobalt chemie farmakologie MeSH
- komplexní sloučeniny chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární konformace MeSH
- nádorové buňky kultivované MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- štěpení DNA MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH