Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39526947
PubMed Central
PMC11632778
DOI
10.1021/acs.biomac.4c01092
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology chemistry chemical synthesis MeSH
- Dendrimers * chemistry chemical synthesis pharmacology MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Humans MeSH
- Micelles * MeSH
- Organophosphorus Compounds * chemistry MeSH
- Surface-Active Agents chemistry chemical synthesis pharmacology MeSH
- Silanes chemistry MeSH
- Molecular Dynamics Simulation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- carbosilane MeSH Browser
- Dendrimers * MeSH
- Micelles * MeSH
- Organophosphorus Compounds * MeSH
- Surface-Active Agents MeSH
- Silanes MeSH
Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.
See more in PubMed
Sharma A.; Liaw K.; Sharma R.; Zhang Z.; Kannan S.; Kannan R. M. Targeting Mitochondrial Dysfunction and Oxidative Stress in Activated Microglia Using Dendrimer-Based Therapeutics. Theranostics 2018, 8 (20), 5529–5547. 10.7150/thno.29039. PubMed DOI PMC
Patra J. K.; Das G.; Fraceto L. F.; Campos E. V. R.; Rodriguez-Torres M. D. P.; Acosta-Torres L. S.; Diaz-Torres L. A.; Grillo R.; Swamy M. K.; Sharma S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71.10.1186/s12951-018-0392-8. PubMed DOI PMC
Apartsin E.; Caminade A. M. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chem.—Eur. J. 2021, 27 (72), 17976–17998. 10.1002/chem.202102589. PubMed DOI PMC
Sherman S. E.; Xiao Q.; Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem. Rev. 2017, 117 (9), 6538–6631. 10.1021/acs.chemrev.7b00097. PubMed DOI
Thota B. N. S.; Urner L. H.; Haag R. Supramolecular Architectures of Dendritic Amphiphiles in Water. Chem. Rev. 2016, 116 (4), 2079–2102. 10.1021/acs.chemrev.5b00417. PubMed DOI
Astruc D.; Boisselier E.; Ornelas C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110 (4), 1857–1959. 10.1021/cr900327d. PubMed DOI
Chen J.; Ellert-Miklaszewska A.; Garofalo S.; Dey A. K.; Tang J.; Jiang Y.; Clément F.; Marche P. N.; Liu X.; Kaminska B.; et al. Synthesis and Use of an Amphiphilic Dendrimer for siRNA Delivery into Primary Immune Cells. Nat. Protoc. 2021, 16 (1), 327–351. 10.1038/s41596-020-00418-9. PubMed DOI PMC
Lyu Z.; Ding L.; Huang A. Y. T.; Kao C. L.; Peng L. Poly(amidoamine) Dendrimers: Covalent and Supramolecular Synthesis. Mater. Today Chem. 2019, 13, 34–48. 10.1016/j.mtchem.2019.04.004. DOI
Galanakou C.; Dhumal D.; Peng L. Amphiphilic Dendrimers against Antibiotic Resistance: Light at the End of the Tunnel?. Biomater. Sci. 2023, 11, 3379–3393. 10.1039/D2BM01878K. PubMed DOI
Zibarov A.; Oukhrib A.; Aujard Catot J.; Turrin C. O.; Caminade A. M. AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules 2021, 26 (13), 4017.10.3390/molecules26134017. PubMed DOI PMC
Keller M.; Collière V.; Reiser O.; Caminade A. M.; Majoral J. P.; Ouali A. Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angew. Chem., Int. Ed. 2013, 52 (13), 3626–3629. 10.1002/anie.201209969. PubMed DOI
Qiu J.; Chen L.; Zhan M.; Laurent R.; Bignon J.; Mignani S.; Shi X.; Caminade A. M.; Majoral J. P. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjugate Chem. 2021, 32 (2), 339–349. 10.1021/acs.bioconjchem.0c00716. PubMed DOI
Mencia G.; Lozano-Cruz T.; Valiente M.; de la Mata J.; Cano J.; Gómez R. New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules 2020, 25 (4), 807.10.3390/molecules25040807. PubMed DOI PMC
Sztandera K.; Gorzkiewicz M.; Bątal M.; Arkhipova V.; Knauer N.; Sánchez-Nieves J.; de la Mata F. J.; Gómez R.; Apartsin E.; Klajnert-Maculewicz B. Triazine-Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int. J. Nanomed. 2022, 17 (February), 1139–1154. 10.2147/IJN.S352349. PubMed DOI PMC
Apartsin E.; Knauer N.; Arkhipova V.; Pashkina E.; Aktanova A.; Poletaeva J.; Sánchez-Nieves J.; de la Mata F. J.; Gómez R. Ph-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. Nanomaterials 2020, 10 (10), 1899.10.3390/nano10101899. PubMed DOI PMC
Galán M.; Sánchez Rodríguez J.; Jiménez J. L.; Relloso M.; Maly M.; De La Mata F. J.; Muñoz-Fernández M. A.; Gómez R. Synthesis of New Anionic Carbosilane Dendrimers via Thiol-Ene Chemistry and Their Antiviral Behaviour. Org. Biomol. Chem. 2014, 12 (20), 3222–3237. 10.1039/c4ob00162a. PubMed DOI
Gutierrez-Ulloa C. E.; Buyanova M. Y.; Apartsin E. K.; Venyaminova A. G.; de la Mata F. J.; Valiente M.; Gómez R. Amphiphilic Carbosilane Dendrons as a Novel Synthetic Platform toward Micelle Formation. Org. Biomol. Chem. 2017, 15 (35), 7352–7364. 10.1039/C7OB01331K. PubMed DOI
Krasheninina O. A.; Apartsin E. K.; Fuentes E.; Szulc A.; Ionov M.; Venyaminova A. G.; Shcharbin D.; de la Mata F. J.; Bryszewska M.; Gomez R. Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics 2019, 11 (1), 25.10.3390/pharmaceutics11010025. PubMed DOI PMC
Müllerová M.; Šabata S.; Matoušek J.; Kormunda M.; Holubová J.; Bálková R.; Petričkovič R.; Koštejn M.; Kupčík J.; Fajgar R.; et al. Organoclays with Carbosilane Dendrimers Containing Ammonium or Phosphonium Groups. New J. Chem. 2018, 42 (2), 1187–1196. 10.1039/C7NJ03979D. DOI
Bielski E. R.; Zhong Q.; Brown M.; da Rocha S. R. P. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(Amidoamine) Dendrimers. Mol. Pharm. 2015, 12 (8), 3043–3053. 10.1021/acs.molpharmaceut.5b00320. PubMed DOI
Strašák T.; Malý J.; Wróbel D.; Malý M.; Herma R.; Čermák J.; Müllerová M.; Št′astná L. Č.; Cuřínová P.; Cuřínová P. Phosphonium Carbosilane Dendrimers for Biomedical Applications - Synthesis, Characterization and Cytotoxicity Evaluation. RSC Adv. 2017, 7 (30), 18724–18744. 10.1039/c7ra01845b. DOI
Ornelas-Megiatto C.; Wich P. R.; Fréchet J. M. J. Polyphosphonium Polymers for siRNA Delivery: An Efficient and Nontoxic Alternative to Polyammonium Carriers. J. Am. Chem. Soc. 2012, 134 (4), 1902–1905. 10.1021/ja207366k. PubMed DOI
Hemp S. T.; Smith A. E.; Bryson J. M.; Allen M. H.; Long T. E. Phosphonium-Containing Diblock Copolymers for Enhanced Colloidal Stability and Efficient Nucleic Acid Delivery. Biomacromolecules 2012, 13 (8), 2439–2445. 10.1021/bm300689f. PubMed DOI
Liegertová M.; Wrobel D.; Herma R.; Müllerová M.; Štastná L. Č.; Cuřínová P.; Strašák T.; Malý M.; Čermák J.; Smejkal J.; et al. Evaluation of Toxicological and Teratogenic Effects of Carbosilane Glucose Glycodendrimers in Zebrafish Embryos and Model Rodent Cell Lines. Nanotoxicology 2018, 12 (8), 797–818. 10.1080/17435390.2018.1475582. PubMed DOI
Herma R.; Wrobel D.; Liegertová M.; Müllerová M.; Strašák T.; Maly M.; Semerádtová A.; Štofik M.; Appelhans D.; Maly J. Carbosilane Dendrimers with Phosphonium Terminal Groups Are Low Toxic Non-Viral Transfection Vectors for siRNA Cell Delivery. Int. J. Pharm. 2019, 562, 51–65. 10.1016/j.ijpharm.2019.03.018. PubMed DOI
Paleos C. M.; Tsiourvas D.; Sideratou Z. Triphenylphosphonium Decorated Liposomes and Dendritic Polymers: Prospective Second Generation Drug Delivery Systems for Targeting Mitochondria. Mol. Pharm. 2016, 13 (7), 2233–2241. 10.1021/acs.molpharmaceut.6b00237. PubMed DOI
Biswas S.; Dodwadkar N. S.; Piroyan A.; Torchilin V. P. Surface Conjugation of Triphenylphosphonium to Target Poly(amidoamine) Dendrimers to Mitochondria. Biomaterials 2012, 33 (18), 4773–4782. 10.1016/j.biomaterials.2012.03.032. PubMed DOI PMC
Lv J.; Wang S.; Qiao D.; Lin Y.; Hu S.; Li M. Mitochondria-Targeting Multifunctional Nanoplatform for Cascade Phototherapy and Hypoxia-Activated Chemotherapy. J. Nanobiotechnol. 2022, 20, 42.10.1186/s12951-022-01244-9. PubMed DOI PMC
Qin Y.; Wang Z.; Wang X.; Zhang T.; Hu Y.; Wang D.; Sun H.; Zhang L.; Zhu Y. Therapeutic Effect of Multifunctional Celastrol Nanoparticles with Mitochondrial Alkaline Drug Release in Breast Cancer. Mater. Today Adv. 2023, 17, 100328.10.1016/j.mtadv.2022.100328. DOI
Murphy M. P.; Smith R. A. J. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656. 10.1146/annurev.pharmtox.47.120505.105110. PubMed DOI
Allemailem K. S.; Almatroudi A.; Alsahli M. A.; Aljaghwani A.; M El-Kady A.; Rahmani A. H.; Khan A. A. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int. J. Nanomed. 2021, 16, 3907–3936. 10.2147/Ijn.S303832. PubMed DOI PMC
Engler A. C.; Wiradharma N.; Ong Z. Y.; Coady D. J.; Hedrick J. L.; Yang Y. Y. Emerging Trends in Macromolecular Antimicrobials to Fight Multi-Drug-Resistant Infections. Nano Today 2012, 7 (3), 201–222. 10.1016/j.nantod.2012.04.003. DOI
Xue Y.; Xiao H.; Zhang Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16 (2), 3626–3655. 10.3390/ijms16023626. PubMed DOI PMC
Lam S. J.; Wong E. H. H.; Boyer C.; Qiao G. G. Antimicrobial Polymeric Nanoparticles. Prog. Polym. Sci. 2018, 76, 40–64. 10.1016/j.progpolymsci.2017.07.007. DOI
Edr A.; Wrobel D.; Krupková A.; Štastná L. Č.; Cuřínová P.; Novák A.; Malý J.; Kalasová J.; Malý J.; Malý M.; et al. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int. J. Mol. Sci. 2022, 23 (4), 2114.10.3390/ijms23042114. PubMed DOI PMC
Wrobel D.; Edr A.; Zemanova E.; Strašák T.; Semeradtova A.; Maly J. The Influence of Amphiphilic Carbosilane Dendrons on Lipid Model Membranes. Chem. Phys. Lipids 2023, 255, 105314.10.1016/j.chemphyslip.2023.105314. PubMed DOI
Krupková A.; Müllerová M.; Petrickovic R.; Strašák T. On the Edge between Organic Solvent Nanofiltration and Ultrafiltration: Characterization of Regenerated Cellulose Membrane with Aspect on Dendrimer Purification and Recycling. Sep. Purif. Technol. 2023, 310, 123141.10.1016/j.seppur.2023.123141. DOI
Gillies E. R.; Jonsson T. B.; Fréchet J. M. J. Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers. J. Am. Chem. Soc. 2004, 126 (38), 11936–11943. 10.1021/ja0463738. PubMed DOI
Rumin J.; Bonnefond H.; Saint-Jean B.; Rouxel C.; Sciandra A.; Bernard O.; Cadoret J. P.; Bougaran G. The Use of Fluorescent Nile Red and BODIPY for Lipid Measurement in Microalgae. Biotechnol. Biofuels 2015, 8 (1), 42.10.1186/s13068-015-0220-4. PubMed DOI PMC
Gupta R.; Rai B.. Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery. In Drug Delivery Systems: Methods in Molecular Biology; Jain K., Ed.; Humana: New York, NY, 2020; Vol. 2059, pp 225–237. PubMed
Laurini E.; Aulic S.; Marson D.; Fermeglia M.; Pricl S.. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. In Design and Delivery of siRNA Therapeutics. Methods in Molecular Biology; Ditzel H. J., Tuttolomondo M., Kauppinen S., Eds.; Humana: New York, NY, 2021; Vol. 2282, pp 209–244. PubMed
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI
Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97 (40), 10269–10280. 10.1021/j100142a004. DOI
Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8 (5), 1542–1555. 10.1021/ct200909j. PubMed DOI PMC
Case D. A.; Belfon K.; Ben-Shalom I. Y., Brozell S. R.; Cerutti D. S.; Cheatham T. E. III, Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Giambasu G.; Gilson M. K.; Gohlke H.; Goetz A. W.; Harris R.; Izadi S.; Izmailov S. A.; Kasavajhala K.; Kovalenko A.; Krasny R.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Man V.; Merz K. M.; Miao Y.; Mikhailovskii O.; Monard G.; Nguyen H.; Onufriev A.; Pan F.; Pantano S.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott-Verdugo S., Shen J.; Simmerling C. L.; Skrynnikov N. R.; Smith J.; Swails J.; Walker R. C.; Wang J.; Wilson L.; Wolf R. M.; Wu X.; Xiong Y.; Xue Y.; York D. M.; Kollman P. A., AMBER 2020; University of California: San Francisco, 2020.
Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI
Wu X.; Brooks B. R.; Vanden-Eijnden E. Self-Guided Langevin Dynamics via Generalized Langevin Equation. J. Comput. Chem. 2016, 37 (6), 595–601. 10.1002/jcc.24015. PubMed DOI PMC
Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25 (13), 1605–1612. 10.1002/jcc.20084. PubMed DOI
Vanquelef E.; Simon S.; Marquant G.; Garcia E.; Klimerak G.; Delepine J. C.; Cieplak P.; Dupradeau F. Y. R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39, W511–W517. 10.1093/nar/gkr288. PubMed DOI PMC
Schmidt M. W.; Baldridge K. K.; Boatz J. A.; Elbert S. T.; Gordon M. S.; Jensen J. H.; Koseki S.; Matsunaga N.; Nguyen K. A.; Su S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14 (11), 1347–1363. 10.1002/jcc.540141112. DOI
Gordon M. S.; Schmidt M. W.. Advances in Electronic Structure Theory: GAMESS a Decade Later. In Theory and Applications of Computational Chemistry; Elsevier, 2005; pp 1167–1189.
Lii J. H.; Allinger N. L. The MM3 Force Field for Amides, Polypeptides and Proteins. J. Comput. Chem. 1991, 12 (2), 186–199. 10.1002/jcc.540120208. DOI
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Clinical and Laboratory Standards Institute (CLSI) . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, In Approved Standard 11th ed.; CLSI document M7-A11; CLSI: Wayne, PA, USA, 2018.
Malinak D.; Dolezal R.; Marek J.; Salajkova S.; Soukup O.; Vejsova M.; Korabecny J.; Honegr J.; Penhaker M.; Musilek K.; et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014, 24 (22), 5238–5241. 10.1016/j.bmcl.2014.09.060. PubMed DOI
Marek J.; Malinak D.; Dolezal R.; Soukup O.; Pasdiorova M.; Dolezal M.; Kuca K. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules 2015, 20 (3), 3681–3696. 10.3390/molecules20033681. PubMed DOI PMC
Yu L.; Lu T.; Luan Y. X.; Liu J.; Xu G. Y. Studies on the Effects of Amino Acids on Micellization of CTAB via Surface Tension Measurements. Colloids Surf., A 2005, 257–258, 375–379. 10.1016/j.colsurfa.2004.10.066. DOI
Yu Z.; Tsapis N.; Fay F.; Chen L.; Karpus A.; Shi X.; Cailleau C.; García Pérez S.; Huang N.; Vergnaud J.; et al. Amphiphilic Phosphorus Dendrons Associated with Anti-Inflammatory siRNA Reduce Symptoms in Murine Collagen-Induced Arthritis. Biomacromolecules 2023, 24 (2), 667–677. 10.1021/acs.biomac.2c01117. PubMed DOI
Liu C. L.; Chen Y.; Shelar D. P.; Li C.; Cheng G.; Fu W. F. Bodipy Dyes Bearing Oligo(ethylene glycol) Groups on the meso-Phenyl Ring: Tuneable Solid-State Photoluminescence and Highly Efficient OLEDs. J. Mater. Chem. C 2014, 2 (28), 5471–5478. 10.1039/c4tc00720d. DOI
Descalzo A. B.; Ashokkumar P.; Shen Z.; Rurack K. On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated Boron-Dipyrromethene (BODIPY) Dyes in Aqueous Solution. ChemPhotoChem 2020, 4 (2), 120–131. 10.1002/cptc.201900235. DOI
Marson D.; Laurini E.; Aulic S.; Fermeglia M.; Pricl S. Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics 2019, 11 (7), 351.10.3390/pharmaceutics11070351. PubMed DOI PMC
Li X.; Sun A. N.; Liu Y. J.; Zhang W. J.; Pang N.; Cheng S. X.; Qi X. R. Amphiphilic Dendrimer Engineered Nanocarrier Systems for Co-delivery of siRNA and Paclitaxel to Matrix Metalloproteinase-Rich Tumors for Synergistic Therapy. NPG Asia Mater. 2018, 10 (4), 238–254. 10.1038/s41427-018-0027-4. DOI
Chen K.; Liao S.; Guo S.; Zhang H.; Cai H.; Gong Q.; Gu Z.; Luo K. Enzyme/pH-Sensitive Dendritic Polymer-DOX Conjugate for Cancer Treatment. Sci. China Mater. 2018, 61 (11), 1462–1474. 10.1007/s40843-018-9277-8. DOI
Wang X.; Guo S.; Li Z.; Luo Q.; Dai Y.; Zhang H.; Ye Y.; Gong Q.; Luo K. Amphiphilic Branched Polymer-Nitroxides Conjugate as a Nanoscale Agent for Potential Magnetic Resonance Imaging of Multiple Objects in Vivo. J. Nanobiotechnol. 2021, 19, 205.10.1186/s12951-021-00951-z. PubMed DOI PMC
Chen L.; Cao L.; Zhan M.; Li J.; Wang D.; Laurent R.; Mignani S.; Caminade A. M.; Majoral J. P.; Shi X. Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System to Take Down Breast Cancer in Vivo. Biomacromolecules 2022, 23 (7), 2827–2837. 10.1021/acs.biomac.2c00197. PubMed DOI
Discher D. E.; Eisenberg A. Polymer Vesicles. Science 2002, 297 (5583), 967–973. 10.1126/science.1074972. PubMed DOI
Nel A.; Xia T.; Mädler L.; Li N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311 (5761), 622–627. 10.1126/science.1114397. PubMed DOI
Lai Z.; Jian Q.; Li G.; Shao C.; Zhu Y.; Yuan X.; Chen H.; Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS Nano 2021, 15 (10), 15824–15840. 10.1021/acsnano.1c03301. PubMed DOI
Dhumal D.; Maron B.; Malach E.; Lyu Z.; Ding L.; Marson D.; Laurini E.; Tintaru A.; Ralahy B.; Giorgio S.; Pricl S.; Hayouka Z.; Peng L. Dynamic Self-Assembling Supramolecular Dendrimer Nanosystems as Potent Antibacterial Candidates against Drug-Resistant Bacteria and Biofilms. Nanoscale 2022, 14 (26), 9286–9296. 10.1039/D2NR02305A. PubMed DOI
Javanmard S. H.; Vaseghi G.; Ghasemi A.; Rafiee L.; Ferns G. A.; Esfahani H. N.; Nedaeinia R. Therapeutic Inhibition of microRNA-21 (miR-21) Using Locked-Nucleic Acid (LNA)-anti-miR and Its Effects on the Biological Behaviors of Melanoma Cancer Cells in Preclinical Studies. Cancer Cell Int. 2020, 20 (1), 384.10.1186/s12935-020-01394-6. PubMed DOI PMC
Xie X.; Liu P.; Wu H.; Li H.; Tang Y.; Chen X.; Xu C.; Liu X.; Dai G. miR-21 Antagonist Alleviates Colitis and Angiogenesis via the PTEN/PI3K/AKT Pathway in Colitis Mice Induced by TNBS. Ann. Transl. Med. 2022, 10 (7), 413.10.21037/atm-22-944. PubMed DOI PMC
Rejman J.; Oberle V.; Zuhorn I. S.; Hoekstra D. Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis. Biochem. J. 2004, 377 (1), 159–169. 10.1042/bj20031253. PubMed DOI PMC
Guo X.; Wei X.; Chen Z.; Zhang X.; Yang G.; Zhou S. Multifunctional Nanoplatforms for Subcellular Delivery of Drugs in Cancer Therapy. Prog. Mater. Sci. 2020, 107, 100599.10.1016/j.pmatsci.2019.100599. DOI
Danaei M.; Dehghankhold M.; Ataei S.; Hasanzadeh Davarani F.; Javanmard R.; Dokhani A.; Khorasani S.; Mozafari M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10 (2), 57.10.3390/pharmaceutics10020057. PubMed DOI PMC