• This record comes from PubMed

Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure

. 2024 Dec 09 ; 25 (12) : 7799-7813. [epub] 20241111

Language English Country United States Media print-electronic

Document type Journal Article

Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.

See more in PubMed

Sharma A.; Liaw K.; Sharma R.; Zhang Z.; Kannan S.; Kannan R. M. Targeting Mitochondrial Dysfunction and Oxidative Stress in Activated Microglia Using Dendrimer-Based Therapeutics. Theranostics 2018, 8 (20), 5529–5547. 10.7150/thno.29039. PubMed DOI PMC

Patra J. K.; Das G.; Fraceto L. F.; Campos E. V. R.; Rodriguez-Torres M. D. P.; Acosta-Torres L. S.; Diaz-Torres L. A.; Grillo R.; Swamy M. K.; Sharma S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71.10.1186/s12951-018-0392-8. PubMed DOI PMC

Apartsin E.; Caminade A. M. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chem.—Eur. J. 2021, 27 (72), 17976–17998. 10.1002/chem.202102589. PubMed DOI PMC

Sherman S. E.; Xiao Q.; Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem. Rev. 2017, 117 (9), 6538–6631. 10.1021/acs.chemrev.7b00097. PubMed DOI

Thota B. N. S.; Urner L. H.; Haag R. Supramolecular Architectures of Dendritic Amphiphiles in Water. Chem. Rev. 2016, 116 (4), 2079–2102. 10.1021/acs.chemrev.5b00417. PubMed DOI

Astruc D.; Boisselier E.; Ornelas C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110 (4), 1857–1959. 10.1021/cr900327d. PubMed DOI

Chen J.; Ellert-Miklaszewska A.; Garofalo S.; Dey A. K.; Tang J.; Jiang Y.; Clément F.; Marche P. N.; Liu X.; Kaminska B.; et al. Synthesis and Use of an Amphiphilic Dendrimer for siRNA Delivery into Primary Immune Cells. Nat. Protoc. 2021, 16 (1), 327–351. 10.1038/s41596-020-00418-9. PubMed DOI PMC

Lyu Z.; Ding L.; Huang A. Y. T.; Kao C. L.; Peng L. Poly(amidoamine) Dendrimers: Covalent and Supramolecular Synthesis. Mater. Today Chem. 2019, 13, 34–48. 10.1016/j.mtchem.2019.04.004. DOI

Galanakou C.; Dhumal D.; Peng L. Amphiphilic Dendrimers against Antibiotic Resistance: Light at the End of the Tunnel?. Biomater. Sci. 2023, 11, 3379–3393. 10.1039/D2BM01878K. PubMed DOI

Zibarov A.; Oukhrib A.; Aujard Catot J.; Turrin C. O.; Caminade A. M. AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules 2021, 26 (13), 4017.10.3390/molecules26134017. PubMed DOI PMC

Keller M.; Collière V.; Reiser O.; Caminade A. M.; Majoral J. P.; Ouali A. Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angew. Chem., Int. Ed. 2013, 52 (13), 3626–3629. 10.1002/anie.201209969. PubMed DOI

Qiu J.; Chen L.; Zhan M.; Laurent R.; Bignon J.; Mignani S.; Shi X.; Caminade A. M.; Majoral J. P. Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjugate Chem. 2021, 32 (2), 339–349. 10.1021/acs.bioconjchem.0c00716. PubMed DOI

Mencia G.; Lozano-Cruz T.; Valiente M.; de la Mata J.; Cano J.; Gómez R. New Ionic Carbosilane Dendrons Possessing Fluorinated Tails at Different Locations on the Skeleton. Molecules 2020, 25 (4), 807.10.3390/molecules25040807. PubMed DOI PMC

Sztandera K.; Gorzkiewicz M.; Bątal M.; Arkhipova V.; Knauer N.; Sánchez-Nieves J.; de la Mata F. J.; Gómez R.; Apartsin E.; Klajnert-Maculewicz B. Triazine-Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int. J. Nanomed. 2022, 17 (February), 1139–1154. 10.2147/IJN.S352349. PubMed DOI PMC

Apartsin E.; Knauer N.; Arkhipova V.; Pashkina E.; Aktanova A.; Poletaeva J.; Sánchez-Nieves J.; de la Mata F. J.; Gómez R. Ph-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. Nanomaterials 2020, 10 (10), 1899.10.3390/nano10101899. PubMed DOI PMC

Galán M.; Sánchez Rodríguez J.; Jiménez J. L.; Relloso M.; Maly M.; De La Mata F. J.; Muñoz-Fernández M. A.; Gómez R. Synthesis of New Anionic Carbosilane Dendrimers via Thiol-Ene Chemistry and Their Antiviral Behaviour. Org. Biomol. Chem. 2014, 12 (20), 3222–3237. 10.1039/c4ob00162a. PubMed DOI

Gutierrez-Ulloa C. E.; Buyanova M. Y.; Apartsin E. K.; Venyaminova A. G.; de la Mata F. J.; Valiente M.; Gómez R. Amphiphilic Carbosilane Dendrons as a Novel Synthetic Platform toward Micelle Formation. Org. Biomol. Chem. 2017, 15 (35), 7352–7364. 10.1039/C7OB01331K. PubMed DOI

Krasheninina O. A.; Apartsin E. K.; Fuentes E.; Szulc A.; Ionov M.; Venyaminova A. G.; Shcharbin D.; de la Mata F. J.; Bryszewska M.; Gomez R. Complexes of Pro-Apoptotic siRNAs and Carbosilane Dendrimers: Formation and Effect on Cancer Cells. Pharmaceutics 2019, 11 (1), 25.10.3390/pharmaceutics11010025. PubMed DOI PMC

Müllerová M.; Šabata S.; Matoušek J.; Kormunda M.; Holubová J.; Bálková R.; Petričkovič R.; Koštejn M.; Kupčík J.; Fajgar R.; et al. Organoclays with Carbosilane Dendrimers Containing Ammonium or Phosphonium Groups. New J. Chem. 2018, 42 (2), 1187–1196. 10.1039/C7NJ03979D. DOI

Bielski E. R.; Zhong Q.; Brown M.; da Rocha S. R. P. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(Amidoamine) Dendrimers. Mol. Pharm. 2015, 12 (8), 3043–3053. 10.1021/acs.molpharmaceut.5b00320. PubMed DOI

Strašák T.; Malý J.; Wróbel D.; Malý M.; Herma R.; Čermák J.; Müllerová M.; Št′astná L. Č.; Cuřínová P.; Cuřínová P. Phosphonium Carbosilane Dendrimers for Biomedical Applications - Synthesis, Characterization and Cytotoxicity Evaluation. RSC Adv. 2017, 7 (30), 18724–18744. 10.1039/c7ra01845b. DOI

Ornelas-Megiatto C.; Wich P. R.; Fréchet J. M. J. Polyphosphonium Polymers for siRNA Delivery: An Efficient and Nontoxic Alternative to Polyammonium Carriers. J. Am. Chem. Soc. 2012, 134 (4), 1902–1905. 10.1021/ja207366k. PubMed DOI

Hemp S. T.; Smith A. E.; Bryson J. M.; Allen M. H.; Long T. E. Phosphonium-Containing Diblock Copolymers for Enhanced Colloidal Stability and Efficient Nucleic Acid Delivery. Biomacromolecules 2012, 13 (8), 2439–2445. 10.1021/bm300689f. PubMed DOI

Liegertová M.; Wrobel D.; Herma R.; Müllerová M.; Štastná L. Č.; Cuřínová P.; Strašák T.; Malý M.; Čermák J.; Smejkal J.; et al. Evaluation of Toxicological and Teratogenic Effects of Carbosilane Glucose Glycodendrimers in Zebrafish Embryos and Model Rodent Cell Lines. Nanotoxicology 2018, 12 (8), 797–818. 10.1080/17435390.2018.1475582. PubMed DOI

Herma R.; Wrobel D.; Liegertová M.; Müllerová M.; Strašák T.; Maly M.; Semerádtová A.; Štofik M.; Appelhans D.; Maly J. Carbosilane Dendrimers with Phosphonium Terminal Groups Are Low Toxic Non-Viral Transfection Vectors for siRNA Cell Delivery. Int. J. Pharm. 2019, 562, 51–65. 10.1016/j.ijpharm.2019.03.018. PubMed DOI

Paleos C. M.; Tsiourvas D.; Sideratou Z. Triphenylphosphonium Decorated Liposomes and Dendritic Polymers: Prospective Second Generation Drug Delivery Systems for Targeting Mitochondria. Mol. Pharm. 2016, 13 (7), 2233–2241. 10.1021/acs.molpharmaceut.6b00237. PubMed DOI

Biswas S.; Dodwadkar N. S.; Piroyan A.; Torchilin V. P. Surface Conjugation of Triphenylphosphonium to Target Poly(amidoamine) Dendrimers to Mitochondria. Biomaterials 2012, 33 (18), 4773–4782. 10.1016/j.biomaterials.2012.03.032. PubMed DOI PMC

Lv J.; Wang S.; Qiao D.; Lin Y.; Hu S.; Li M. Mitochondria-Targeting Multifunctional Nanoplatform for Cascade Phototherapy and Hypoxia-Activated Chemotherapy. J. Nanobiotechnol. 2022, 20, 42.10.1186/s12951-022-01244-9. PubMed DOI PMC

Qin Y.; Wang Z.; Wang X.; Zhang T.; Hu Y.; Wang D.; Sun H.; Zhang L.; Zhu Y. Therapeutic Effect of Multifunctional Celastrol Nanoparticles with Mitochondrial Alkaline Drug Release in Breast Cancer. Mater. Today Adv. 2023, 17, 100328.10.1016/j.mtadv.2022.100328. DOI

Murphy M. P.; Smith R. A. J. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656. 10.1146/annurev.pharmtox.47.120505.105110. PubMed DOI

Allemailem K. S.; Almatroudi A.; Alsahli M. A.; Aljaghwani A.; M El-Kady A.; Rahmani A. H.; Khan A. A. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int. J. Nanomed. 2021, 16, 3907–3936. 10.2147/Ijn.S303832. PubMed DOI PMC

Engler A. C.; Wiradharma N.; Ong Z. Y.; Coady D. J.; Hedrick J. L.; Yang Y. Y. Emerging Trends in Macromolecular Antimicrobials to Fight Multi-Drug-Resistant Infections. Nano Today 2012, 7 (3), 201–222. 10.1016/j.nantod.2012.04.003. DOI

Xue Y.; Xiao H.; Zhang Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16 (2), 3626–3655. 10.3390/ijms16023626. PubMed DOI PMC

Lam S. J.; Wong E. H. H.; Boyer C.; Qiao G. G. Antimicrobial Polymeric Nanoparticles. Prog. Polym. Sci. 2018, 76, 40–64. 10.1016/j.progpolymsci.2017.07.007. DOI

Edr A.; Wrobel D.; Krupková A.; Štastná L. Č.; Cuřínová P.; Novák A.; Malý J.; Kalasová J.; Malý J.; Malý M.; et al. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int. J. Mol. Sci. 2022, 23 (4), 2114.10.3390/ijms23042114. PubMed DOI PMC

Wrobel D.; Edr A.; Zemanova E.; Strašák T.; Semeradtova A.; Maly J. The Influence of Amphiphilic Carbosilane Dendrons on Lipid Model Membranes. Chem. Phys. Lipids 2023, 255, 105314.10.1016/j.chemphyslip.2023.105314. PubMed DOI

Krupková A.; Müllerová M.; Petrickovic R.; Strašák T. On the Edge between Organic Solvent Nanofiltration and Ultrafiltration: Characterization of Regenerated Cellulose Membrane with Aspect on Dendrimer Purification and Recycling. Sep. Purif. Technol. 2023, 310, 123141.10.1016/j.seppur.2023.123141. DOI

Gillies E. R.; Jonsson T. B.; Fréchet J. M. J. Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers. J. Am. Chem. Soc. 2004, 126 (38), 11936–11943. 10.1021/ja0463738. PubMed DOI

Rumin J.; Bonnefond H.; Saint-Jean B.; Rouxel C.; Sciandra A.; Bernard O.; Cadoret J. P.; Bougaran G. The Use of Fluorescent Nile Red and BODIPY for Lipid Measurement in Microalgae. Biotechnol. Biofuels 2015, 8 (1), 42.10.1186/s13068-015-0220-4. PubMed DOI PMC

Gupta R.; Rai B.. Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery. In Drug Delivery Systems: Methods in Molecular Biology; Jain K., Ed.; Humana: New York, NY, 2020; Vol. 2059, pp 225–237. PubMed

Laurini E.; Aulic S.; Marson D.; Fermeglia M.; Pricl S.. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. In Design and Delivery of siRNA Therapeutics. Methods in Molecular Biology; Ditzel H. J., Tuttolomondo M., Kauppinen S., Eds.; Humana: New York, NY, 2021; Vol. 2282, pp 209–244. PubMed

Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI

Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97 (40), 10269–10280. 10.1021/j100142a004. DOI

Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8 (5), 1542–1555. 10.1021/ct200909j. PubMed DOI PMC

Case D. A.; Belfon K.; Ben-Shalom I. Y., Brozell S. R.; Cerutti D. S.; Cheatham T. E. III, Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Giambasu G.; Gilson M. K.; Gohlke H.; Goetz A. W.; Harris R.; Izadi S.; Izmailov S. A.; Kasavajhala K.; Kovalenko A.; Krasny R.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Man V.; Merz K. M.; Miao Y.; Mikhailovskii O.; Monard G.; Nguyen H.; Onufriev A.; Pan F.; Pantano S.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott-Verdugo S., Shen J.; Simmerling C. L.; Skrynnikov N. R.; Smith J.; Swails J.; Walker R. C.; Wang J.; Wilson L.; Wolf R. M.; Wu X.; Xiong Y.; Xue Y.; York D. M.; Kollman P. A., AMBER 2020; University of California: San Francisco, 2020.

Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI

Wu X.; Brooks B. R.; Vanden-Eijnden E. Self-Guided Langevin Dynamics via Generalized Langevin Equation. J. Comput. Chem. 2016, 37 (6), 595–601. 10.1002/jcc.24015. PubMed DOI PMC

Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25 (13), 1605–1612. 10.1002/jcc.20084. PubMed DOI

Vanquelef E.; Simon S.; Marquant G.; Garcia E.; Klimerak G.; Delepine J. C.; Cieplak P.; Dupradeau F. Y. R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39, W511–W517. 10.1093/nar/gkr288. PubMed DOI PMC

Schmidt M. W.; Baldridge K. K.; Boatz J. A.; Elbert S. T.; Gordon M. S.; Jensen J. H.; Koseki S.; Matsunaga N.; Nguyen K. A.; Su S.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14 (11), 1347–1363. 10.1002/jcc.540141112. DOI

Gordon M. S.; Schmidt M. W.. Advances in Electronic Structure Theory: GAMESS a Decade Later. In Theory and Applications of Computational Chemistry; Elsevier, 2005; pp 1167–1189.

Lii J. H.; Allinger N. L. The MM3 Force Field for Amides, Polypeptides and Proteins. J. Comput. Chem. 1991, 12 (2), 186–199. 10.1002/jcc.540120208. DOI

Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI

Clinical and Laboratory Standards Institute (CLSI) . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, In Approved Standard 11th ed.; CLSI document M7-A11; CLSI: Wayne, PA, USA, 2018.

Malinak D.; Dolezal R.; Marek J.; Salajkova S.; Soukup O.; Vejsova M.; Korabecny J.; Honegr J.; Penhaker M.; Musilek K.; et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorg. Med. Chem. Lett. 2014, 24 (22), 5238–5241. 10.1016/j.bmcl.2014.09.060. PubMed DOI

Marek J.; Malinak D.; Dolezal R.; Soukup O.; Pasdiorova M.; Dolezal M.; Kuca K. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules 2015, 20 (3), 3681–3696. 10.3390/molecules20033681. PubMed DOI PMC

Yu L.; Lu T.; Luan Y. X.; Liu J.; Xu G. Y. Studies on the Effects of Amino Acids on Micellization of CTAB via Surface Tension Measurements. Colloids Surf., A 2005, 257–258, 375–379. 10.1016/j.colsurfa.2004.10.066. DOI

Yu Z.; Tsapis N.; Fay F.; Chen L.; Karpus A.; Shi X.; Cailleau C.; García Pérez S.; Huang N.; Vergnaud J.; et al. Amphiphilic Phosphorus Dendrons Associated with Anti-Inflammatory siRNA Reduce Symptoms in Murine Collagen-Induced Arthritis. Biomacromolecules 2023, 24 (2), 667–677. 10.1021/acs.biomac.2c01117. PubMed DOI

Liu C. L.; Chen Y.; Shelar D. P.; Li C.; Cheng G.; Fu W. F. Bodipy Dyes Bearing Oligo(ethylene glycol) Groups on the meso-Phenyl Ring: Tuneable Solid-State Photoluminescence and Highly Efficient OLEDs. J. Mater. Chem. C 2014, 2 (28), 5471–5478. 10.1039/c4tc00720d. DOI

Descalzo A. B.; Ashokkumar P.; Shen Z.; Rurack K. On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated Boron-Dipyrromethene (BODIPY) Dyes in Aqueous Solution. ChemPhotoChem 2020, 4 (2), 120–131. 10.1002/cptc.201900235. DOI

Marson D.; Laurini E.; Aulic S.; Fermeglia M.; Pricl S. Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics 2019, 11 (7), 351.10.3390/pharmaceutics11070351. PubMed DOI PMC

Li X.; Sun A. N.; Liu Y. J.; Zhang W. J.; Pang N.; Cheng S. X.; Qi X. R. Amphiphilic Dendrimer Engineered Nanocarrier Systems for Co-delivery of siRNA and Paclitaxel to Matrix Metalloproteinase-Rich Tumors for Synergistic Therapy. NPG Asia Mater. 2018, 10 (4), 238–254. 10.1038/s41427-018-0027-4. DOI

Chen K.; Liao S.; Guo S.; Zhang H.; Cai H.; Gong Q.; Gu Z.; Luo K. Enzyme/pH-Sensitive Dendritic Polymer-DOX Conjugate for Cancer Treatment. Sci. China Mater. 2018, 61 (11), 1462–1474. 10.1007/s40843-018-9277-8. DOI

Wang X.; Guo S.; Li Z.; Luo Q.; Dai Y.; Zhang H.; Ye Y.; Gong Q.; Luo K. Amphiphilic Branched Polymer-Nitroxides Conjugate as a Nanoscale Agent for Potential Magnetic Resonance Imaging of Multiple Objects in Vivo. J. Nanobiotechnol. 2021, 19, 205.10.1186/s12951-021-00951-z. PubMed DOI PMC

Chen L.; Cao L.; Zhan M.; Li J.; Wang D.; Laurent R.; Mignani S.; Caminade A. M.; Majoral J. P.; Shi X. Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System to Take Down Breast Cancer in Vivo. Biomacromolecules 2022, 23 (7), 2827–2837. 10.1021/acs.biomac.2c00197. PubMed DOI

Discher D. E.; Eisenberg A. Polymer Vesicles. Science 2002, 297 (5583), 967–973. 10.1126/science.1074972. PubMed DOI

Nel A.; Xia T.; Mädler L.; Li N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311 (5761), 622–627. 10.1126/science.1114397. PubMed DOI

Lai Z.; Jian Q.; Li G.; Shao C.; Zhu Y.; Yuan X.; Chen H.; Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS Nano 2021, 15 (10), 15824–15840. 10.1021/acsnano.1c03301. PubMed DOI

Dhumal D.; Maron B.; Malach E.; Lyu Z.; Ding L.; Marson D.; Laurini E.; Tintaru A.; Ralahy B.; Giorgio S.; Pricl S.; Hayouka Z.; Peng L. Dynamic Self-Assembling Supramolecular Dendrimer Nanosystems as Potent Antibacterial Candidates against Drug-Resistant Bacteria and Biofilms. Nanoscale 2022, 14 (26), 9286–9296. 10.1039/D2NR02305A. PubMed DOI

Javanmard S. H.; Vaseghi G.; Ghasemi A.; Rafiee L.; Ferns G. A.; Esfahani H. N.; Nedaeinia R. Therapeutic Inhibition of microRNA-21 (miR-21) Using Locked-Nucleic Acid (LNA)-anti-miR and Its Effects on the Biological Behaviors of Melanoma Cancer Cells in Preclinical Studies. Cancer Cell Int. 2020, 20 (1), 384.10.1186/s12935-020-01394-6. PubMed DOI PMC

Xie X.; Liu P.; Wu H.; Li H.; Tang Y.; Chen X.; Xu C.; Liu X.; Dai G. miR-21 Antagonist Alleviates Colitis and Angiogenesis via the PTEN/PI3K/AKT Pathway in Colitis Mice Induced by TNBS. Ann. Transl. Med. 2022, 10 (7), 413.10.21037/atm-22-944. PubMed DOI PMC

Rejman J.; Oberle V.; Zuhorn I. S.; Hoekstra D. Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis. Biochem. J. 2004, 377 (1), 159–169. 10.1042/bj20031253. PubMed DOI PMC

Guo X.; Wei X.; Chen Z.; Zhang X.; Yang G.; Zhou S. Multifunctional Nanoplatforms for Subcellular Delivery of Drugs in Cancer Therapy. Prog. Mater. Sci. 2020, 107, 100599.10.1016/j.pmatsci.2019.100599. DOI

Danaei M.; Dehghankhold M.; Ataei S.; Hasanzadeh Davarani F.; Javanmard R.; Dokhani A.; Khorasani S.; Mozafari M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10 (2), 57.10.3390/pharmaceutics10020057. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...