Synthesis and disinfection effect of the pyridine-4-aldoxime based salts
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25719739
PubMed Central
PMC6272478
DOI
10.3390/molecules20033681
PII: molecules20033681
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Antifungal Agents chemical synthesis pharmacology MeSH
- Bacteria drug effects MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Fungi drug effects MeSH
- Quaternary Ammonium Compounds chemical synthesis pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Oximes chemistry MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Quaternary Ammonium Compounds MeSH
- Oximes MeSH
- pyridine-4-aldoxime MeSH Browser
A set of new quaternary ammonium compounds based on pyridine-4-aldoxime was synthesized, characterized with analytical data (NMR, EA, HPLC, MS) and tested for in vitro antimicrobial activity (antibacterial, antifungal) and cytotoxicity. Quaternary pyridinium-4-aldoxime salts with length of alkyl side chain from C8 to C20 and belonging to the group of cationic surfactants were investigated in this work. An HPLC experimental protocol for characterization of mixtures of all homologues has been found. Antimicrobial evaluation found that yeast-type fungi were most sensitive towards C14 and C16 analogues, whereas the C16 analogue was completely ineffective against filamentous fungi. Antibacterial assessment showed versatility of C14 and relatively high efficacy of C16 against G+ strains and C14 against G- strains. Notably, none of the studied compounds exceeded the efficacy and versatility of the benzalkonium C12 analogue, and benzalkonium analogues also exhibited lower cytotoxicity in the cell viability assay.
See more in PubMed
Singh S., Bhadani A., Kataria H., Kaur G., Kamboj R. Synthesis of glycerol-based pyridinium surfactants and appraisal of their properties. Ind. Eng. Chem. Res. 2009;48:1673–1677. doi: 10.1021/ie801737m. DOI
Earle M.J., Katdare S.P., Seddon K.R. Paradigm confirmed: The first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org. Lett. 2004;6:707–710. doi: 10.1021/ol036310e. PubMed DOI
Price P.B. Benzalkonium chloride (zephiran chloride) as a skin disinfectant. Arch. Surg. 1950;61:23–33. doi: 10.1001/archsurg.1950.01250020026004. PubMed DOI
Semmler A., Kohler H.H. Surface properties of alkylpyridinium chlorides and the applicability of the pendant drop technique. J. Colloid Interface Sci. 1999;218:137–144. doi: 10.1006/jcis.1999.6413. PubMed DOI
Akbas H., Kartal C.C.I. Reactive orange 16-dodecylpyridinium chloride interactions in electrolytic solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006;65:95–99. doi: 10.1016/j.saa.2005.09.033. PubMed DOI
Rodriguez-Morales S., Compadre R.L., Castillo R., Breen P.J., Compadre C.M. 3D-QSAR, synthesis, and antimicrobial activity of 1-alkylpyridinium compounds as potential agents to improve food safety. Eur. J. Med. Chem. 2005;40:840–849. doi: 10.1016/j.ejmech.2005.02.012. PubMed DOI
Sivak A., Goyer M., Perwak J., Thayer P. Environmental and Human Health Aspects of Commercially Important Surfactants. In: Mittal K.L., Fendler E.J., editors. Solution Behaviour of Surfactants (Theoretical and Applied Aspects) Volume 1. Plenum Press; New York, NY, USA: 1982. pp. 161–188.
Kuca K., Bielavska M., Cabal J., Dohnal V. Determination of benzalkonium bromide homologues in disinfection products using high-performance liquid chromatography. Anal. Lett. 2005;38:673–682. doi: 10.1081/AL-200050326. DOI
Kuca K., Marek J., Stodulka P., Musilek K., Hanusova P., Hrabinova M., Jun D. Preparation of benzalkonium salts differing in the length of a side alkyl chain. Molecules. 2007;12:2341–2347. doi: 10.3390/12102341. PubMed DOI PMC
Wong Y.L., Hubieki M.P., Curfman C.L., Doncel G.F., Dudding T.C., Savle P.S., Gandour R.D. A structure-activity study of spermicidal and anti-hiv properties of hydroxylated cationic surfactants. Bioorg. Med. Chem. 2002;10:3599–3608. doi: 10.1016/S0968-0896(02)00245-6. PubMed DOI
Lin J., Qiu S.Y., Lewis K., Klibanov A.M. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol. Prog. 2002;18:1082–1086. doi: 10.1021/bp025597w. PubMed DOI
Tiller J.C., Liao C.J., Lewis K., Klibanov A.M. Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA. 2001;98:5981–5985. doi: 10.1073/pnas.111143098. PubMed DOI PMC
Faraj J.A., Dorati R., Schoubben A., Worthen D., Selmin F., Capan Y., Leung K., DeLuca P.P. Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech. 2007;8:E177–E185. doi: 10.1208/pt0801026. PubMed DOI PMC
Tanzer J.M., Slee A.M., Kamay B., Scheer E.R. In vitro evaluation of seven cationic detergents as antiplaque agents. Antimicrob. Agents Chemother. 1979;15:408–414. doi: 10.1128/AAC.15.3.408. PubMed DOI PMC
Shelton R.S., Vancampen M.G., Tilford C.H., Lang H.C., Nisonger L., Bandelin F.J., Rubenkoenig H.L. Quaternary ammonium salts as germicides 1. Non-acylated quaternary ammonium salts derived from aliphatic amines. J. Am. Chem. Soc. 1946;68:753–755. PubMed
Li Y.B., Slavik M.F., Walker J.T., Xiong H. Pre-chill spray of chicken carcasses to reduce salmonella typhimurium. J. Food Sci. 1997;62:605–607. doi: 10.1111/j.1365-2621.1997.tb04441.x. DOI
Brill F., Goroncy-Bermes P., Sand W. Influence of growth media on the sensitivity of staphylococcus aureus and pseudomonas aeruginosa to cationic biocides. Int. J. Hyg. Environ. Health. 2006;209:89–95. doi: 10.1016/j.ijheh.2005.08.007. PubMed DOI
Dwars T., Paetzold E., Oehme G. Reactions in micellar systems. Angewa. Chem. Int. Ed. 2005;44:7174–7199. doi: 10.1002/anie.200501365. PubMed DOI
Ghosh K.K., Kolay S., Bal S., Satnami M.L., Quagliotto P., Dafonte P.R. Effect of cationic gemini surfactants on the hydrolysis of carboxylate and phosphate esters using hydroxamate ions. Coll. Polym. Sci. 2008;286:293–303. doi: 10.1007/s00396-007-1769-7. DOI
Ghosh K.K., Satnami M.L., Sinha D. Dephosphorylation of paraoxon by hydroxamate ions in micellar media. Tetrahedron. Lett. 2004;45:9103–9105. doi: 10.1016/j.tetlet.2004.10.023. DOI
Singh N., Ghosh K.K., Marek J., Kuca K. Hydrolysis of carboxylate and phosphate esters using monopyridinium oximes in cationic micellar media. Int. J. Chem. Kinet. 2011;43:569–578. doi: 10.1002/kin.20525. DOI
Cabal J., Kuca K., Sevelova-Bartosova L., Dohnal V. Cyclodextrines as functional agents for decontamination of the skin contaminated by nerve agents. Acta Medica (Hradec Kral.) 2004;47:115–118. PubMed
Tiwari S., Ghosh K.K., Marek J., Kuca K. Comparative study of nucleophilic efficacy of pralidoxime towards phosphorus, sulfur and thiophosphorus based esters. React. Kinet. Catal. Lett. 2009;98:91–97. doi: 10.1007/s11144-009-0072-7. DOI
Tiwari S., Ghosh K.K., Marek J., Kuca K. Functionalized surfactant mediated reactions of carboxylate, phosphate and sulphonate esters. J. Phys. Org. Chem. 2010;23:519–525. doi: 10.1002/poc.1635. DOI
Tiwari S., Ghosh K.K., Marek J., Kuca K. Cationic micellar-catalyzed hydrolysis of pesticide fenitrothion using alpha-nucleophiles. Lett. Drug Des. Discov. 2010;7:194–199. doi: 10.2174/157018010790596650. DOI
Tiwari S., Kolay S., Ghosh K.K., Kuca K., Marek J. Kinetic study of the reactions of p-nitrophenyl acetate and p-nitrophenyl benzoate with oximate nucleophiles. Int. J. Chem. Kinet. 2009;41:57–64. doi: 10.1002/kin.20363. DOI
Fisicaro E., Pelizzetti E., Viscardi G., Quagliotto P.L., Trossarelli L. Thermodynamic properties of aqueous micellar solutions of N-(1H,1H,2H,2H perfluorooctyl)pyridinium chloride and N-(1H,1H,2H,2H perfluorodecyl)pyridinium chloride. In: Franses E.I., Weers J.G., editors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Proceedings of the ACS Symposium on Colloid and Surface Chemistry of Fluorocarbons and Highly Fluorinated Amphiphiles at 205th Annual ACS Meeting; Denver, CO, USA. 28 March–2 April 1993; London, UK: Elsevier; 1994. pp. 59–70.
Fisicaro E., Ghiozzi A., Pelizzetti E., Viscardi G., Quagliotto P.L. Effect of the counterion on thermodynamic properties of aqueous micellar solutions of 1-(3,3,4,4,5,5,6,6,6-nonafluorohexyl) pyridinium halides: Ii. Apparent and partial molar enthalpies and osmotic coefficients at 313 k. J. Colloid Interface Sci. 1996;184:147–154. PubMed
Fisicaro E., Biemmi M., Compari C., Duce E., Peroni M. Thermodynamics of aqueous solutions of dodecyldimethylethylammonium bromide. J. Colloid Interface Sci. 2007;305:301–307. doi: 10.1016/j.jcis.2006.09.063. PubMed DOI
Kuca K., Kivala M., Dohnal V. A general method for the quaternization of N,N-dimethyl benzylamines with long chain N-alkylbromides. J. Appl. Biomed. 2004;2:195–198.
Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment—synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18:2397–2418. doi: 10.3390/molecules18022397. PubMed DOI PMC
Korabecny J., Soukup O., Dolezal R., Spilovska K., Nepovimova E., Andrs M., Nquyen T.D., Jun D., Musilek K., Kucerova-Chlupacova M., Kuca K. From pyridinium-based to central active acetylcholinesterase reactivators. Mini Rev. Med. Chem. 2014;14:215–221. doi: 10.2174/1389557514666140219103138. PubMed DOI
Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorg. Med. Chem. Lett. 2014;24:5238–5241. PubMed
Jordan D., Tan E., Hegh D. Synthesis, characterization and conductivity of quaternary nitrogen surfactants modified by the addition of a hydroxymethyl substructure on the head group. J. Surfactants Deterg. 2012;15:587–592. doi: 10.1007/s11743-012-1360-1. DOI
Kamboj R., Singh S., Chauhan V. Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N'-(2-hydroxyethyl)imidazolium surfactants. Coll. Surf. A Physicochem. Eng. Asp. 2014;441:233–241. doi: 10.1016/j.colsurfa.2013.08.063. DOI
Li Y.L., Li Q.X., Zhi L.F., Zhang M.H. Synthesis, characterization and surface activity of trioctyl hydroxyethyl ammonium chloride. Tenside Surfactants Deterg. 2011;48:305–307. doi: 10.3139/113.110135. DOI
Marek J., Stodulka P., Cabal J., Soukup O., Pohanka M., Korabecny J., Musilek K., Kuca K. Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules. 2010;15:1967–1972. doi: 10.3390/molecules15031967. PubMed DOI PMC
Marek J., Buchta V., Soukup O., Stodulka P., Cabal J., Ghosh K.K., Musilek K., Kuca K. Preparation of quinolinium salts differing in the length of the alkyl side chain. Molecules. 2012;17:6386–6394. doi: 10.3390/molecules17066386. PubMed DOI PMC
Coughlin R.T., Tonsager S., McGroarty E.J. Quantitation of metal-cations bound to membranes and extracted lipopolysaccharide of escherichia-coli. Biochemistry. 1983;22:2002–2007. doi: 10.1021/bi00277a041. PubMed DOI
McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 2001;14:227–228. PubMed PMC
Zhong X., Guo J.W., Fu S.Q., Zhu D.Y., Peng J.P. Synthesis, surface property and antimicrobial activity of cationic gemini surfactants containing adamantane and amide groups. J. Surfactants Deterg. 2014;17:943–950. doi: 10.1007/s11743-014-1580-7. DOI
Clinical and Laboratory Standards Institute (CLSI) Approved Standard-Third Edition. CLSI; Wayne, PA, USA: 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. CLSI document M27-A3.
Clinical and Laboratory Standards Institute (CLSI) Approved Standard-Second Edition. CLSI; Wayne, PA, USA: 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. CLSI document M38-A2.
Clinical and Laboratory Standards Institute (CLSI) Approved Standard-Seventh Edition. CLSI; Wayne, PA, USA: 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. CLSI document M7-A7.
Synthesis and Decontamination Effect on Chemical and Biological Agents of Benzoxonium-Like Salts
The Antibacterial Effects of New N-Alkylpyridinium Salts on Planktonic and Biofilm Bacteria
Wide-Antimicrobial Spectrum of Picolinium Salts