Wide-Antimicrobial Spectrum of Picolinium Salts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-09-00198
Czech Health Research Council
PubMed
32403238
PubMed Central
PMC7248777
DOI
10.3390/molecules25092254
PII: molecules25092254
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, critical micellar concentration, cytotoxicity, picolinium salts, quaternary ammonium compounds, surfactant,
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky farmakologie MeSH
- antivirové látky farmakologie MeSH
- Candida účinky léků MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- houby účinky léků MeSH
- kvartérní amoniové sloučeniny chemie farmakologie MeSH
- kyseliny pikolinové chemická syntéza chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- povrchově aktivní látky chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- virus varicella zoster účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky MeSH
- antivirové látky MeSH
- kvartérní amoniové sloučeniny MeSH
- kyseliny pikolinové MeSH
- picolinic acid MeSH Prohlížeč
- povrchově aktivní látky MeSH
Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.
Zobrazit více v PubMed
Kuca K., Kivala M., Dohnal V. A general method for the quaternization of N,N-dimethyl benzylamines with long chain n-alkylbromides. J. Appl. Biomed. 2004;2:195–198. doi: 10.32725/jab.2004.023. DOI
Augusta S., Gruber H.F., Streichsbier F. Synthesis and antibacterial activity of immobilized quaternary ammonium salts. J. Appl. Polym. Sci. 1994;53:1149–1163. doi: 10.1002/app.1994.070530903. DOI
Grenoble Z., Baldelli S. Adsorption of the Cationic Surfactant Benzyldimethylhexadecylammonium Chloride at the Silica–Water Interface and Metal Salt Effects on the Adsorption Kinetics. J. Phys. Chem. B. 2012;117:259–272. doi: 10.1021/jp3091107. PubMed DOI
Garcia M.T., Ribosa I., Perez L., Manresa M.A., Comelles F. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. Langmuir. 2013;29:2536–2545. doi: 10.1021/la304752e. PubMed DOI
Jennings M.C., Minbiole K.P.C., Wuest W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect Dis. 2015;1:288–303. doi: 10.1021/acsinfecdis.5b00047. PubMed DOI
Marek J., Stodulka P., Cabal J., Soukup O., Pohanka M., Korabecny J., Musilek K., Kuca K. Preparation of the Pyridinium Salts Differing in the Length of the N-Alkyl Substituent. Molecules. 2010;15:1967–1972. doi: 10.3390/molecules15031967. PubMed DOI PMC
Marek J., Stodulka P., Soukup O., Musilek K., Cabal J., Ramalho T.C. Synthesis of the Isoquinolinium Salts Differing in the Length of the Side Alkylating Chain. Mil. Med. Sci. Lett. 2012;81:76–81. doi: 10.31482/mmsl.2012.010. DOI
Obłąk E., Piecuch A., Guz-Regner K., Dworniczek E. Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiol. Lett. 2013;350:190–198. doi: 10.1111/1574-6968.12331. PubMed DOI
Marek J., Joskova V., Dolezal R., Soukup O., Benkova M., Fucikova A., Malinak D., Bostik V., Kuca K. Synthesis, Antimicrobial Effect and Surface Properties of Hydroxymethylsubstituted Pyridinium Salts. Lett. Drug Des. Discov. 2018;15:828–842. doi: 10.2174/1570180814666171110142233. DOI
Shtyrlin N., Sapozhnikov S.V., Galiullina A.S., Kayumov A.R., Bondar O.V., Mirchink E.P., Isakova E.B., Firsov A.A., Balakin K.V., Shtyrlin Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. BioMed Res. Int. 2016;2016:1–8. doi: 10.1155/2016/3864193. PubMed DOI PMC
Marek J., Malinak D., Dolezal R., Soukup O., Pasdiorova M., Dolezal M., Ramalho T.C. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules. 2015;20:3681–3696. doi: 10.3390/molecules20033681. PubMed DOI PMC
Singh N., Ghosh K.K., Marek J., Ramalho T.C. Hydrolysis of carboxylate and phosphate esters using monopyridinium oximes in cationic micellar media. Int. J. Chem. Kinet. 2011;43:569–578. doi: 10.1002/kin.20590. DOI
Singh N., Karpichev Y., Gupta B., Satnami M.L., Marek J., Ramalho T.C., Ghosh K.K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B. 2013;117:3806–3817. doi: 10.1021/jp310010q. PubMed DOI
Salajkova S., Sramek M., Malinak D., Havel F., Musilek K., Benkova M., Soukup O., Vasicova P., Prchal L., Dolezal R., et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity. J. Biophotonics. 2019;12:e201900024. doi: 10.1002/jbio.201900024. PubMed DOI
Ioannou C.J., Hanlon G.W., Denyer S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2006;51:296–306. doi: 10.1128/AAC.00375-06. PubMed DOI PMC
Jadhav M., Kalhapure R.S., Rambharose S., Mocktar C., Govender T. Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. J. Ind. Eng. Chem. 2017;47:405–414. doi: 10.1016/j.jiec.2016.12.013. DOI
Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsová M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorganic Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI
Dolezal R., Soukup O., Malinak D., Savedra R., Marek J., Dolezalova M., Pasdiorova M., Salajkova S., Korabecny J., Honegr J., et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2016;121:699–711. doi: 10.1016/j.ejmech.2016.05.058. PubMed DOI
Soukup O., Dolezal R., Malinak D., Marek J., Salajkova S., Pasdiorova M., Honegr J., Korabecny J., Nachtigal P., Nachon F., et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorganic Med. Chem. 2016;24:841–848. doi: 10.1016/j.bmc.2016.01.006. PubMed DOI
Jiao Y., Niu L.-N., Ma S., Li J., Tay F.R., Chen J. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017;71:53–90. doi: 10.1016/j.progpolymsci.2017.03.001. PubMed DOI PMC
Tezel U., Pavlostathis S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015;33:296–304. doi: 10.1016/j.copbio.2015.03.018. PubMed DOI
McBain A.J., Ledder R.G., Moore L.E., Catrenich C.E., Gilbert P. Effects of Quaternary-Ammonium-Based Formulations on Bacterial Community Dynamics and Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2004;70:3449–3456. doi: 10.1128/AEM.70.6.3449-3456.2004. PubMed DOI PMC
Yeaman M.R., Yount N., Hauger R.L., Grigoriadis D.E., Dallman M.F., Plotsky P.M., Vale W.W., Dautzenberg F.M. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003;55:27–55. doi: 10.1124/pr.55.1.2. PubMed DOI
Dolezikova Mackova I., Macek T., Mackova M. Antimikrobialni peptidy: Vztah mezi jejich strukturou a antibarcterialni aktivitou. Chem. Listy. 2011;105:346–355.
Kocourkova L., Novotná P., Cujova S., Cerovsky V., Urbanova M., Setnicka V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;170:247–255. doi: 10.1016/j.saa.2016.07.015. PubMed DOI
Benkova M., Soukup O., Prchal L., Sleha R., Elersek T., Novak M., Sepčić K., Gunde-Cimerman N., Dolezal R., Bostik V., et al. Synthesis, Antimicrobial Effect and Lipophilicity-Activity Dependence of Three Series of Dichained N -Alkylammonium Salts. ChemistrySelect. 2019;4:12076–12084. doi: 10.1002/slct.201902357. DOI
El Hage S., Lajoie B., Stigliani J.-L., Furiga-Chusseau A., Roques C., Baziard G. Synthesis, antimicrobial activity and physico-chemical properties of some n-alkyldimethylbenzylammonium halides. J. Appl. Biomed. 2014;12:245–253. doi: 10.1016/j.jab.2014.02.002. DOI
Williams H.D., Sahbaz Y., Ford L., Nguyen T.-H., Scammells P.J., Porter C.J. Ionic liquids provide unique opportunities for oral drug delivery: Structure optimization and in vivo evidence of utility. Chem. Commun. 2014;50:1688. doi: 10.1039/C3CC48650H. PubMed DOI
Samanta S.K., Bhattacharya S. Aggregation induced emission switching and electrical properties of chain length dependent π-gels derived from phenylenedivinylene bis-pyridinium salts in alcohol–water mixtures. J. Mater. Chem. 2012;22:25277. doi: 10.1039/c2jm35012b. DOI
Fayyaz S., Talat R., Ali S., Khalid N., Shah A., Ullah F. Synthesis, Characterization, and Micellization Behavior of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromides and Their Drug Interaction Study by UV–Visible Spectroscopy and Conductometry. J. Surfactants Deterg. 2019;22:625–632. doi: 10.1002/jsde.12263. DOI
Fayyaz S., Ali S., Khalid N., Shah A., Ullah F. One Pot Synthesis and Properties of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromide. J. Surfactants Deterg. 2016;19:841–848. doi: 10.1007/s11743-016-1817-8. DOI
Mishra A., Patel S., Behera R.K., Mishra B.K., Behera G.B. Dye-Surfactant Interaction: Role of an Alkyl Chain in the Localization of Styrylpyridinium Dyes in a Hydrophobic Force Field of a Cationic Surfactant (CTAB) Bull. Chem. Soc. Jpn. 1997;70:2913–2918. doi: 10.1246/bcsj.70.2913. DOI
Bhattacharya S., Samanta S.K. Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based pi hydrogelator. Chemistry. 2012;18:16632–16641. doi: 10.1002/chem.201201940. PubMed DOI
Dey N., Samanta S.K., Bhattacharya S. Heparin triggered dose dependent multi-color emission switching in water: A convenient protocol for heparinase I estimation in real-life biological fluids. Chem. Commun. 2017;53:1486–1489. doi: 10.1039/C6CC08657H. PubMed DOI
A Bell N., Bradley C.S., Broughton R.A., Coles S.J., Hibbs D.E., Hursthouse M.B., Ray A.K., Simmonds D.J., Thorpe S.C. Comparison of the structure property relationships in LB films of zwitterionic TCNQ adducts. J. Mater. Chem. 2005;15:1437–1445. doi: 10.1039/b414325f. DOI
Mayorga B.J.L., Sandoval-Chavez C.I., Carreon-Castro P., Ugalde-Saldivar V.M., Cortez-Guzman F., Lopez-Cortes J.G., Ortega-Alfaro M.C., Sandoval-Chavez C.I., Carreon-Castro M.D.P. Ferrocene amphiphilic D–π–A dyes: Synthesis, redox behavior and determination of band gaps. New J. Chem. 2018;42:6101–6113. doi: 10.1039/C8NJ00787J. DOI
Würthner F., Yao S., Debaerdemaeker T., Wortmann R. Dimerization of Merocyanine Dyes. Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials. J. Am. Chem. Soc. 2002;124:9431–9447. doi: 10.1021/ja020168f. PubMed DOI
Weir C.A., Hadizad T., Beaudin A.M., Wang Z.Y. Effecient synthesis and decomposition study of optically nonlinear adducts of tetracyanoquinodimethane. Tetrahedron Lett. 2003;44:4697–4700. doi: 10.1016/S0040-4039(03)01054-2. DOI
Adderson J.E., Taylor H. The effects of temperature on the critical micelle concentrations of alkyl α-picolinium bromides. J. Pharm. Pharmacol. 1970;22:523–530. doi: 10.1111/j.2042-7158.1970.tb10557.x. PubMed DOI
Fu D., Gao X., Huang B., Wang J., Sun Y., Zhang W., Kan K., Zhang X., Xie Y., Sui X. Micellization, surface activities and thermodynamics study of pyridinium-based ionic liquid surfactants in aqueous solution. RSC Adv. 2019;9:28799–28807. doi: 10.1039/C9RA04226A. PubMed DOI PMC
Tiwari A., Sahoo M., Soreng P., Mishra B.K. Synthesis, Characterization, Solution Behavior, and Density Functional Theory Analysis of Some Pyridinium-Based Ionic Liquids. J. Surfactants Deterg. 2018;21:367–373. doi: 10.1002/jsde.12034. DOI
Viscardi G., Quagliotto P., Barolo C., Savarino P., Barni E., Fisicaro E. Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem. 2000;65:8197–8203. doi: 10.1021/jo0006425. PubMed DOI
Akhter K., Ullah K., Talat R., Haider A., Khalid N., Ullah F., Ali S. Synthesis and characterization of cationic surfactants and their interactions with drug and metal complexes. Heliyon. 2019;5:e01885. doi: 10.1016/j.heliyon.2019.e01885. PubMed DOI PMC
Shashkov M.V., Sidelnikov V.N., Zaikin P. Selectivity of stationary phases based on pyridinium ionic liquids for capillary gas chromatography. Russ. J. Phys. Chem. A. 2014;88:717–721. doi: 10.1134/S0036024414040268. DOI
Crooks P., Ravard A., Wilkins L.H., Teng L.-H., Buxton S.T., Dwoskin L.P. Inhibition of nicotine-evoked [3H] dopamine release by pyridino N-substituted nicotine analogues: A new class of nicotinic antagonist. Drug Dev. Res. 1995;36:91–102. doi: 10.1002/ddr.430360204. DOI
Dwoskin L.P., Sumithran S.P., Zhu J., Deaciuc A., Ayers J.T., A Crooks P. Subtype-selective nicotinic receptor antagonists: Potential as tobacco use cessation agents. Bioorganic Med. Chem. Lett. 2004;14:1863–1867. doi: 10.1016/j.bmcl.2003.10.073. PubMed DOI
Zheng F., Bayram E., Sumithran S.P., Ayers J.T., Zhan C.-G., Schmitt J.D., Dwoskin L.P., Crooks P. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorganic Med. Chem. 2006;14:3017–3037. doi: 10.1016/j.bmc.2005.12.036. PubMed DOI
Zheng G., Sumithran S.P., Deaciuc A.G., Dwoskin L.P., Crooks P. Tris-azaaromatic quaternary ammonium salts: Novel templates as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release. Bioorganic Med. Chem. Lett. 2007;17:6701–6706. doi: 10.1016/j.bmcl.2007.10.062. PubMed DOI PMC
Zheng F., McConnell M., Zhan C.-G., Dwoskin L.P., Crooks P. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum. Bioorganic Med. Chem. 2009;17:4477–4485. doi: 10.1016/j.bmc.2009.05.010. PubMed DOI PMC
Madaan P., Tyagi V.K. Quaternary pyridinium salts: A review. J. Oleo Sci. 2008;57:197–215. doi: 10.5650/jos.57.197. PubMed DOI
Mivehi L., Bordes R., Holmberg K. Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR—Effect of the presence of hydroxyl groups in the spacer. Colloids Surf. A Physicochem. Eng. Asp. 2013;419:21–27. doi: 10.1016/j.colsurfa.2012.11.044. PubMed DOI
Łuczak J., Jungnickel C., Łącka I., Stolte S., Hupka J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010;12:593. doi: 10.1039/b921805j. DOI
Pernak J., Skrzypczak A., Bogacki M. Quantitative Relation between Surface Active Properties and Antibiotic Activity of 1-Alkyl-3-alkylthiomethylimidazolium Chlorides. Chem. Pharm. Bull. 1995;43:2019–2020. doi: 10.1248/cpb.43.2019. PubMed DOI
Zhou C., Wang F., Chen H., Li M., Qiao F., Liu Z., Hou Y., Wu C., Fan Y., Liu L., et al. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Appl. Mater. Interfaces. 2016;8:4242–4249. doi: 10.1021/acsami.5b12688. PubMed DOI
Laatiris A., El Achouri M., Infante M.R., Bensouda Y. Antibacterial activity, structure and CMC relationships of alkanediyl α,ω-bis(dimethylammonium bromide) surfactants. Microbiol. Res. 2008;163:645–650. doi: 10.1016/j.micres.2006.09.006. PubMed DOI
Kanazawa A., Ikeda T., Endo T. A novel approach to mode of action of cationic biocides morphological effect on antibacterial activity. J. Appl. Bacteriol. 1995;78:55–60. doi: 10.1111/j.1365-2672.1995.tb01673.x. PubMed DOI
Tawfik S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Ind. Eng. Chem. 2015;28:171–183. doi: 10.1016/j.jiec.2015.02.011. DOI
CLSI . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. CLSI standard M07.
Zovko A., Gabric M.V., Sepcic K., Pohleven F., Jaklic D., Cimerman N.G., Lu Z., Edrada-Ebel R., Houssen W.E., Mancini I., et al. Antifungal and antibacterial activity of 3-alkylpyridinium polymeric analogs of marine toxins. Int. Biodeterior. Biodegrad. 2012;68:71–77. doi: 10.1016/j.ibiod.2011.10.014. DOI
Spearman C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. Br. J. Psychol. 1908;2:227–242. doi: 10.1111/j.2044-8295.1908.tb00176.x. DOI
EN 14476 Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements (Phase 2, Step 1) British Standards Institution; London, UK: