Wide-Antimicrobial Spectrum of Picolinium Salts

. 2020 May 11 ; 25 (9) : . [epub] 20200511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32403238

Grantová podpora
NV19-09-00198 Czech Health Research Council

Nosocomial infections, which greatly increase morbidity among hospitalized patients, together with growing antibiotic resistance still encourage many researchers to search for novel antimicrobial compounds. Picolinium salts with different lengths of alkyl chains (C12, C14, C16) were prepared by Menshutkin-like reaction and evaluated with respect to their biological activity, i.e., lipophilicity and critical micellar concentration. Picolinium salts with C14 and C16 side chains achieved similar or even better results when in terms of antimicrobial efficacy than benzalkoniums; notably, their fungicidal efficiency was substantially more potent. The position of the methyl substituent on the aromatic ring does not seem to affect antimicrobial activity, in contrast to the effect of length of the N-alkyl chain. Concurrently, picolinium salts exhibited satisfactory low cytotoxicity against mammalian cells, i.e., lower than that of benzalkonium compounds, which are considered as safe.

Zobrazit více v PubMed

Kuca K., Kivala M., Dohnal V. A general method for the quaternization of N,N-dimethyl benzylamines with long chain n-alkylbromides. J. Appl. Biomed. 2004;2:195–198. doi: 10.32725/jab.2004.023. DOI

Augusta S., Gruber H.F., Streichsbier F. Synthesis and antibacterial activity of immobilized quaternary ammonium salts. J. Appl. Polym. Sci. 1994;53:1149–1163. doi: 10.1002/app.1994.070530903. DOI

Grenoble Z., Baldelli S. Adsorption of the Cationic Surfactant Benzyldimethylhexadecylammonium Chloride at the Silica–Water Interface and Metal Salt Effects on the Adsorption Kinetics. J. Phys. Chem. B. 2012;117:259–272. doi: 10.1021/jp3091107. PubMed DOI

Garcia M.T., Ribosa I., Perez L., Manresa M.A., Comelles F. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. Langmuir. 2013;29:2536–2545. doi: 10.1021/la304752e. PubMed DOI

Jennings M.C., Minbiole K.P.C., Wuest W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect Dis. 2015;1:288–303. doi: 10.1021/acsinfecdis.5b00047. PubMed DOI

Marek J., Stodulka P., Cabal J., Soukup O., Pohanka M., Korabecny J., Musilek K., Kuca K. Preparation of the Pyridinium Salts Differing in the Length of the N-Alkyl Substituent. Molecules. 2010;15:1967–1972. doi: 10.3390/molecules15031967. PubMed DOI PMC

Marek J., Stodulka P., Soukup O., Musilek K., Cabal J., Ramalho T.C. Synthesis of the Isoquinolinium Salts Differing in the Length of the Side Alkylating Chain. Mil. Med. Sci. Lett. 2012;81:76–81. doi: 10.31482/mmsl.2012.010. DOI

Obłąk E., Piecuch A., Guz-Regner K., Dworniczek E. Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiol. Lett. 2013;350:190–198. doi: 10.1111/1574-6968.12331. PubMed DOI

Marek J., Joskova V., Dolezal R., Soukup O., Benkova M., Fucikova A., Malinak D., Bostik V., Kuca K. Synthesis, Antimicrobial Effect and Surface Properties of Hydroxymethylsubstituted Pyridinium Salts. Lett. Drug Des. Discov. 2018;15:828–842. doi: 10.2174/1570180814666171110142233. DOI

Shtyrlin N., Sapozhnikov S.V., Galiullina A.S., Kayumov A.R., Bondar O.V., Mirchink E.P., Isakova E.B., Firsov A.A., Balakin K.V., Shtyrlin Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. BioMed Res. Int. 2016;2016:1–8. doi: 10.1155/2016/3864193. PubMed DOI PMC

Marek J., Malinak D., Dolezal R., Soukup O., Pasdiorova M., Dolezal M., Ramalho T.C. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules. 2015;20:3681–3696. doi: 10.3390/molecules20033681. PubMed DOI PMC

Singh N., Ghosh K.K., Marek J., Ramalho T.C. Hydrolysis of carboxylate and phosphate esters using monopyridinium oximes in cationic micellar media. Int. J. Chem. Kinet. 2011;43:569–578. doi: 10.1002/kin.20590. DOI

Singh N., Karpichev Y., Gupta B., Satnami M.L., Marek J., Ramalho T.C., Ghosh K.K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B. 2013;117:3806–3817. doi: 10.1021/jp310010q. PubMed DOI

Salajkova S., Sramek M., Malinak D., Havel F., Musilek K., Benkova M., Soukup O., Vasicova P., Prchal L., Dolezal R., et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity. J. Biophotonics. 2019;12:e201900024. doi: 10.1002/jbio.201900024. PubMed DOI

Ioannou C.J., Hanlon G.W., Denyer S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2006;51:296–306. doi: 10.1128/AAC.00375-06. PubMed DOI PMC

Jadhav M., Kalhapure R.S., Rambharose S., Mocktar C., Govender T. Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. J. Ind. Eng. Chem. 2017;47:405–414. doi: 10.1016/j.jiec.2016.12.013. DOI

Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsová M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorganic Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI

Dolezal R., Soukup O., Malinak D., Savedra R., Marek J., Dolezalova M., Pasdiorova M., Salajkova S., Korabecny J., Honegr J., et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2016;121:699–711. doi: 10.1016/j.ejmech.2016.05.058. PubMed DOI

Soukup O., Dolezal R., Malinak D., Marek J., Salajkova S., Pasdiorova M., Honegr J., Korabecny J., Nachtigal P., Nachon F., et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorganic Med. Chem. 2016;24:841–848. doi: 10.1016/j.bmc.2016.01.006. PubMed DOI

Jiao Y., Niu L.-N., Ma S., Li J., Tay F.R., Chen J. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017;71:53–90. doi: 10.1016/j.progpolymsci.2017.03.001. PubMed DOI PMC

Tezel U., Pavlostathis S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015;33:296–304. doi: 10.1016/j.copbio.2015.03.018. PubMed DOI

McBain A.J., Ledder R.G., Moore L.E., Catrenich C.E., Gilbert P. Effects of Quaternary-Ammonium-Based Formulations on Bacterial Community Dynamics and Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2004;70:3449–3456. doi: 10.1128/AEM.70.6.3449-3456.2004. PubMed DOI PMC

Yeaman M.R., Yount N., Hauger R.L., Grigoriadis D.E., Dallman M.F., Plotsky P.M., Vale W.W., Dautzenberg F.M. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003;55:27–55. doi: 10.1124/pr.55.1.2. PubMed DOI

Dolezikova Mackova I., Macek T., Mackova M. Antimikrobialni peptidy: Vztah mezi jejich strukturou a antibarcterialni aktivitou. Chem. Listy. 2011;105:346–355.

Kocourkova L., Novotná P., Cujova S., Cerovsky V., Urbanova M., Setnicka V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;170:247–255. doi: 10.1016/j.saa.2016.07.015. PubMed DOI

Benkova M., Soukup O., Prchal L., Sleha R., Elersek T., Novak M., Sepčić K., Gunde-Cimerman N., Dolezal R., Bostik V., et al. Synthesis, Antimicrobial Effect and Lipophilicity-Activity Dependence of Three Series of Dichained N -Alkylammonium Salts. ChemistrySelect. 2019;4:12076–12084. doi: 10.1002/slct.201902357. DOI

El Hage S., Lajoie B., Stigliani J.-L., Furiga-Chusseau A., Roques C., Baziard G. Synthesis, antimicrobial activity and physico-chemical properties of some n-alkyldimethylbenzylammonium halides. J. Appl. Biomed. 2014;12:245–253. doi: 10.1016/j.jab.2014.02.002. DOI

Williams H.D., Sahbaz Y., Ford L., Nguyen T.-H., Scammells P.J., Porter C.J. Ionic liquids provide unique opportunities for oral drug delivery: Structure optimization and in vivo evidence of utility. Chem. Commun. 2014;50:1688. doi: 10.1039/C3CC48650H. PubMed DOI

Samanta S.K., Bhattacharya S. Aggregation induced emission switching and electrical properties of chain length dependent π-gels derived from phenylenedivinylene bis-pyridinium salts in alcohol–water mixtures. J. Mater. Chem. 2012;22:25277. doi: 10.1039/c2jm35012b. DOI

Fayyaz S., Talat R., Ali S., Khalid N., Shah A., Ullah F. Synthesis, Characterization, and Micellization Behavior of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromides and Their Drug Interaction Study by UV–Visible Spectroscopy and Conductometry. J. Surfactants Deterg. 2019;22:625–632. doi: 10.1002/jsde.12263. DOI

Fayyaz S., Ali S., Khalid N., Shah A., Ullah F. One Pot Synthesis and Properties of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromide. J. Surfactants Deterg. 2016;19:841–848. doi: 10.1007/s11743-016-1817-8. DOI

Mishra A., Patel S., Behera R.K., Mishra B.K., Behera G.B. Dye-Surfactant Interaction: Role of an Alkyl Chain in the Localization of Styrylpyridinium Dyes in a Hydrophobic Force Field of a Cationic Surfactant (CTAB) Bull. Chem. Soc. Jpn. 1997;70:2913–2918. doi: 10.1246/bcsj.70.2913. DOI

Bhattacharya S., Samanta S.K. Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based pi hydrogelator. Chemistry. 2012;18:16632–16641. doi: 10.1002/chem.201201940. PubMed DOI

Dey N., Samanta S.K., Bhattacharya S. Heparin triggered dose dependent multi-color emission switching in water: A convenient protocol for heparinase I estimation in real-life biological fluids. Chem. Commun. 2017;53:1486–1489. doi: 10.1039/C6CC08657H. PubMed DOI

A Bell N., Bradley C.S., Broughton R.A., Coles S.J., Hibbs D.E., Hursthouse M.B., Ray A.K., Simmonds D.J., Thorpe S.C. Comparison of the structure property relationships in LB films of zwitterionic TCNQ adducts. J. Mater. Chem. 2005;15:1437–1445. doi: 10.1039/b414325f. DOI

Mayorga B.J.L., Sandoval-Chavez C.I., Carreon-Castro P., Ugalde-Saldivar V.M., Cortez-Guzman F., Lopez-Cortes J.G., Ortega-Alfaro M.C., Sandoval-Chavez C.I., Carreon-Castro M.D.P. Ferrocene amphiphilic D–π–A dyes: Synthesis, redox behavior and determination of band gaps. New J. Chem. 2018;42:6101–6113. doi: 10.1039/C8NJ00787J. DOI

Würthner F., Yao S., Debaerdemaeker T., Wortmann R. Dimerization of Merocyanine Dyes. Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials. J. Am. Chem. Soc. 2002;124:9431–9447. doi: 10.1021/ja020168f. PubMed DOI

Weir C.A., Hadizad T., Beaudin A.M., Wang Z.Y. Effecient synthesis and decomposition study of optically nonlinear adducts of tetracyanoquinodimethane. Tetrahedron Lett. 2003;44:4697–4700. doi: 10.1016/S0040-4039(03)01054-2. DOI

Adderson J.E., Taylor H. The effects of temperature on the critical micelle concentrations of alkyl α-picolinium bromides. J. Pharm. Pharmacol. 1970;22:523–530. doi: 10.1111/j.2042-7158.1970.tb10557.x. PubMed DOI

Fu D., Gao X., Huang B., Wang J., Sun Y., Zhang W., Kan K., Zhang X., Xie Y., Sui X. Micellization, surface activities and thermodynamics study of pyridinium-based ionic liquid surfactants in aqueous solution. RSC Adv. 2019;9:28799–28807. doi: 10.1039/C9RA04226A. PubMed DOI PMC

Tiwari A., Sahoo M., Soreng P., Mishra B.K. Synthesis, Characterization, Solution Behavior, and Density Functional Theory Analysis of Some Pyridinium-Based Ionic Liquids. J. Surfactants Deterg. 2018;21:367–373. doi: 10.1002/jsde.12034. DOI

Viscardi G., Quagliotto P., Barolo C., Savarino P., Barni E., Fisicaro E. Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem. 2000;65:8197–8203. doi: 10.1021/jo0006425. PubMed DOI

Akhter K., Ullah K., Talat R., Haider A., Khalid N., Ullah F., Ali S. Synthesis and characterization of cationic surfactants and their interactions with drug and metal complexes. Heliyon. 2019;5:e01885. doi: 10.1016/j.heliyon.2019.e01885. PubMed DOI PMC

Shashkov M.V., Sidelnikov V.N., Zaikin P. Selectivity of stationary phases based on pyridinium ionic liquids for capillary gas chromatography. Russ. J. Phys. Chem. A. 2014;88:717–721. doi: 10.1134/S0036024414040268. DOI

Crooks P., Ravard A., Wilkins L.H., Teng L.-H., Buxton S.T., Dwoskin L.P. Inhibition of nicotine-evoked [3H] dopamine release by pyridino N-substituted nicotine analogues: A new class of nicotinic antagonist. Drug Dev. Res. 1995;36:91–102. doi: 10.1002/ddr.430360204. DOI

Dwoskin L.P., Sumithran S.P., Zhu J., Deaciuc A., Ayers J.T., A Crooks P. Subtype-selective nicotinic receptor antagonists: Potential as tobacco use cessation agents. Bioorganic Med. Chem. Lett. 2004;14:1863–1867. doi: 10.1016/j.bmcl.2003.10.073. PubMed DOI

Zheng F., Bayram E., Sumithran S.P., Ayers J.T., Zhan C.-G., Schmitt J.D., Dwoskin L.P., Crooks P. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorganic Med. Chem. 2006;14:3017–3037. doi: 10.1016/j.bmc.2005.12.036. PubMed DOI

Zheng G., Sumithran S.P., Deaciuc A.G., Dwoskin L.P., Crooks P. Tris-azaaromatic quaternary ammonium salts: Novel templates as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release. Bioorganic Med. Chem. Lett. 2007;17:6701–6706. doi: 10.1016/j.bmcl.2007.10.062. PubMed DOI PMC

Zheng F., McConnell M., Zhan C.-G., Dwoskin L.P., Crooks P. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum. Bioorganic Med. Chem. 2009;17:4477–4485. doi: 10.1016/j.bmc.2009.05.010. PubMed DOI PMC

Madaan P., Tyagi V.K. Quaternary pyridinium salts: A review. J. Oleo Sci. 2008;57:197–215. doi: 10.5650/jos.57.197. PubMed DOI

Mivehi L., Bordes R., Holmberg K. Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR—Effect of the presence of hydroxyl groups in the spacer. Colloids Surf. A Physicochem. Eng. Asp. 2013;419:21–27. doi: 10.1016/j.colsurfa.2012.11.044. PubMed DOI

Łuczak J., Jungnickel C., Łącka I., Stolte S., Hupka J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010;12:593. doi: 10.1039/b921805j. DOI

Pernak J., Skrzypczak A., Bogacki M. Quantitative Relation between Surface Active Properties and Antibiotic Activity of 1-Alkyl-3-alkylthiomethylimidazolium Chlorides. Chem. Pharm. Bull. 1995;43:2019–2020. doi: 10.1248/cpb.43.2019. PubMed DOI

Zhou C., Wang F., Chen H., Li M., Qiao F., Liu Z., Hou Y., Wu C., Fan Y., Liu L., et al. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Appl. Mater. Interfaces. 2016;8:4242–4249. doi: 10.1021/acsami.5b12688. PubMed DOI

Laatiris A., El Achouri M., Infante M.R., Bensouda Y. Antibacterial activity, structure and CMC relationships of alkanediyl α,ω-bis(dimethylammonium bromide) surfactants. Microbiol. Res. 2008;163:645–650. doi: 10.1016/j.micres.2006.09.006. PubMed DOI

Kanazawa A., Ikeda T., Endo T. A novel approach to mode of action of cationic biocides morphological effect on antibacterial activity. J. Appl. Bacteriol. 1995;78:55–60. doi: 10.1111/j.1365-2672.1995.tb01673.x. PubMed DOI

Tawfik S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Ind. Eng. Chem. 2015;28:171–183. doi: 10.1016/j.jiec.2015.02.011. DOI

CLSI . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. CLSI standard M07.

Zovko A., Gabric M.V., Sepcic K., Pohleven F., Jaklic D., Cimerman N.G., Lu Z., Edrada-Ebel R., Houssen W.E., Mancini I., et al. Antifungal and antibacterial activity of 3-alkylpyridinium polymeric analogs of marine toxins. Int. Biodeterior. Biodegrad. 2012;68:71–77. doi: 10.1016/j.ibiod.2011.10.014. DOI

Spearman C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. Br. J. Psychol. 1908;2:227–242. doi: 10.1111/j.2044-8295.1908.tb00176.x. DOI

EN 14476 Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements (Phase 2, Step 1) British Standards Institution; London, UK:

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...