7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer's disease treatment--synthesis, biological evaluation and molecular modeling studies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23429378
PubMed Central
PMC6270602
DOI
10.3390/molecules18022397
PII: molecules18022397
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- amantadin chemická syntéza chemie farmakologie terapeutické užití MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie terapeutické užití MeSH
- dimerizace * MeSH
- enzymatické testy MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- molekulární modely * MeSH
- referenční standardy MeSH
- simulace molekulového dockingu MeSH
- takrin analogy a deriváty chemická syntéza chemie farmakologie terapeutické užití MeSH
- thiomočovina chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 7-methoxytacrine MeSH Prohlížeč
- acetylcholinesterasa MeSH
- amantadin MeSH
- cholinesterasové inhibitory MeSH
- takrin MeSH
- thiomočovina MeSH
A structural series of 7-MEOTA-adamantylamine thioureas was designed, synthesized and evaluated as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). The compounds were prepared based on the multi-target-directed ligand strategy with different linker lengths (n = 2-8) joining the well-known NMDA antagonist adamantine and the hAChE inhibitor 7-methoxytacrine (7-MEOTA). Based on in silico studies, these inhibitors proved dual binding site character capable of simultaneous interaction with the peripheral anionic site (PAS) of hAChE and the catalytic active site (CAS). Clearly, these structural derivatives exhibited very good inhibitory activity towards hBChE resulting in more selective inhibitors of this enzyme. The most potent cholinesterase inhibitor was found to be thiourea analogue 14 (with an IC₅₀ value of 0.47 µM for hAChE and an IC₅₀ value of 0.11 µM for hBChE, respectively). Molecule 14 is a suitable novel lead compound for further evaluation proving that the strategy of dual binding site inhibitors might be a promising direction for development of novel AD drugs.
Zobrazit více v PubMed
Lipton S.A. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: Low-affinity, Uncompetitive antagonism. Curr. Alzheimer Res. 2005;2:155–165. doi: 10.2174/1567205053585846. PubMed DOI
Dominguez E., Chin T.Y., Chen C.P., Wu T.Y. Management of moderate to severe Alzheimer’s disease: Focus on memantine. Taiwan J. Obstet. Gynecol. 2011;50:415–423. doi: 10.1016/j.tjog.2011.10.004. PubMed DOI
Benzi G., Moretti A. Is there a rationale for use of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease? Eur. J. Pharmacol. 1998;346:1–13. doi: 10.1016/S0014-2999(98)00093-4. PubMed DOI
Walsh D.M., Selkoe D.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron. 2004;44:181–193. doi: 10.1016/j.neuron.2004.09.010. PubMed DOI
Belluti F., Bartolini M., Bottegoni G., Bisi A., Cavalli A., Andrisano V., Rampa A. Benzophenone-based derivatives: A novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. Eur. J. Med. Chem. 2011;46:1682–1693. doi: 10.1016/j.ejmech.2011.02.019. PubMed DOI
Scarpini E., Scheltens P., Feldman H. Treatment of Alzheimer’s disease: Current status and new perspectives. Lancet Neurol. 2003;2:39–47. PubMed
Shan W.J., Huang L., Zhou Q., Meng F.C., Li X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multifunctional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem. 2011;46:5885–5893. PubMed
Guo T., Hobbs D.W. Development of BACE1 inhibitors for Alzheimer’s disease. 2006;13:1811–1829. PubMed
Zhu Y., Xiao L., Xiong B., Fu Y., Yu H., Wang W., Wang X., Hu D., Peng H., Li J., et al. Design, Synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase. Bioorg. Med. Chem. 2009;17:1600–1613. PubMed
Bartus R.T., Dean 3rd R.L., Beer B., Lippa A.S. Thee cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–414. PubMed
Terry A.V., Jr., Buccafusco J.J. The cholinergic hypothesis age and Alzheimer’s disease- related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 2003;306:821–827. doi: 10.1124/jpet.102.041616. PubMed DOI
Whitehouse P.J. Cholinergic therapy in dementia. Acta Neurol. Scand. Suppl. 1993;149:42–45. PubMed
Kelly C.A., Harvey R.J., Cayton H. Drug treatments for Alzheimer’s disease. BMJ. 1997;314:693–694. doi: 10.1136/bmj.314.7082.693. PubMed DOI PMC
Scott L.J., Goa K.L. Galantamine: A review of its use in Alzheimer’s disease. Drug. 2000;60:1095–1122. doi: 10.2165/00003495-200060050-00008. PubMed DOI
Bielavsky J. Analogues of 9-amino-1,2,3,4-tetrahydroacridine. Collect. Czech. Chem. Commun. 1977;42:2802–2808. doi: 10.1135/cccc19772802. DOI
Yan A., Wang K. Quantitative structure and bioactivity relationship study on human acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2012;22:3336–3342. doi: 10.1016/j.bmcl.2012.02.108. PubMed DOI
Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006:CD005593. PubMed PMC
McShane R., Areosa Sastre A., Minakaran N. Memantine for dementia. Cochrane Database Syst. Rev. 2006:CD003154. PubMed
Weiner M.W., Sadowsky C., Saxton J., Hofbauer R.K., Graham S.M., Yu S.Y., Li S., Hsu H.A., Suhy J., Fridman M., et al. Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’s disease. Alzheimers Dement. 2011;7:425–435. PubMed
Munoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem. 2008;15:2433–2455. doi: 10.2174/092986708785909067. PubMed DOI
Chen H.S., Pellegrini J.W., Aggarwall S.K., Lei S.Z., Warach S., Jensen F.E., Lipton S.A. Open-channel block of N-metyhl-D-aspartate (NMDA) responses by memantine: Therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 1992;12:4427–4436. PubMed PMC
Parson C.G., Danysz W., Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—A review of preclinical data. Neuropharmacology. 1999;38:735–767. doi: 10.1016/S0028-3908(99)00019-2. PubMed DOI
Wu H.M., Tzeng N.S., Qian L., Wei S.J., Hu X., Chen H.S., Rawls S.M., Flood P., Hong J.S., Lu R.B. Novel neuroprotective mechanisms of memantine: increase in neurotropic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34:2344–2357. PubMed PMC
Kim J.H., Lee H.W., Hwang J., Kim J., Lee M.J., Han H.S., Lee W.H., Suk K. Microglial-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol. Aging. 2012;33:2145–2159. doi: 10.1016/j.neurobiolaging.2011.08.011. PubMed DOI
Kornhuber J., Bormann J., Hübers M., Rusche K., Riederer P. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: A human postmortem brain study. Eur. J. Pharmacol. 1991;206:297–300. doi: 10.1016/0922-4106(91)90113-V. PubMed DOI
Inzelberg R., Bonuccelli U., Schechtman E., Miniowich A., Strugatsky R., Ceravolo R., Logi C., Rossi C., Klein C., Rabey J.M. Association between amantadine and the onset of dementia in Parkinson’s disease. Mor. Disord. 2006;21:1375–1379. doi: 10.1002/mds.20968. PubMed DOI
Robinson D.M., Keating G.M. Memantine: A review of its use in Alzheimer’s disease. Drugs. 2006;66:1515–1534. doi: 10.2165/00003495-200666110-00015. PubMed DOI
Dejmek L. 7-MEOTA. Drug. Future. 1990;15:126.
Watkins P.B., Zimmerman H.J., Knapp M.J., Gracon S.I., Lewis K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA. 1994;271:992–998. PubMed
Patocka J., Jun D., Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr. Drug. MeTable. 2008;9:332–335. doi: 10.2174/138920008784220619. PubMed DOI
Korabecny J., Musilek K., Zemek F., Horova A., Holas O., Nepovimova E., Opletalova V., Hroudova J., Fisar Z., Jung Y.S., et al. Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine—New tacrine derivative with cholinergic properties. Bioorg. Med. Chem. Lett. 2011;21:6563–6566. PubMed
Korabecny J., Musilek K., Holas O., Nepovimova E., Jun D., Zemek F., Opletalova V., Patocka J., Dohnal V., Nachon F., et al. Synthesis and in vitro evaluation of N-(Bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine as a cholinesterase inhibitor with regard to Alzheimer’s disease treatment. Molecules. 2010;15:8804–8812. PubMed PMC
Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. PubMed
Korabecny J., Holas O., Musilek K., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in vitro evaluation of new tacrine derivatives—Bis-alkylene linked 7-MEOTA. Lett. Org. Chem. 2010;7:327–331. doi: 10.2174/157017810791130540. DOI
Youdim M.B., Buccafusco J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005;26:27–35. doi: 10.1016/j.tips.2004.11.007. PubMed DOI
Cavalli A., Bolognesi M.L., Minarini A., Rosini M., Tumiatti V., Recanatini M., Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008;51:347–372. PubMed
Kozurkova M., Hamulakova S., Gazova Z., Paulikova H., Kristian P. Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties. Pharmaceuticals. 2011;4:382–418. doi: 10.3390/ph4020382. DOI
Melchiorre C., Andrisano V., Bolognesi M.L., Budriesi R., Cavalli A., Cavrini A., Rosini M., Tumiatti V., Recanatini M. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J. Med. Chem. 1998;41:4186–4189. PubMed
Sterling J., Herzig Y., Goren T., Finkelstein N., Lerner D., Goldenberg W., Miskolezi I., Molnar S., Rantal F., Tamas T., et al. Novel dual inhibitors of AchE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J. Med. Chem. 2002;45:5260–5279. PubMed
Zheng H., Amit T., Bar-Am O., Fridkin M., Youdim M.B., Mandel S.A. From anti-Parkinson’s drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer’s disease. J. Alzheimers Dis. 2012;30:1–16. PubMed
Weinreb O., Amit T., Bar-Am O., Youdim M.B. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain- selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets. 2012;13:483–494. doi: 10.2174/138945012799499794. PubMed DOI
Kogen H., Toda N., Tago K., Marumoto S., Takami K., Ori M., Yamada N., Koyama K., Naruto S., Abe K., et al. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer’s disease. Org. Lett. 2002;4:3359–3362. PubMed
Toda N., Kaneko T., Kogen H. Development of an efficient therapeutic agent for Alzheimer’s disease: Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter. Chem. Pharm. Bull. (Tokyo) 2011;58:273–287. PubMed
Cavalli A., Bolognesi M.L., Capsoni S., Andrisano V., Bartolini M., Margotti E., Cattaneo A., Recanatini M., Melchiorre C. A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew. Chem. Int. Ed. Engl. 2007;46:3689–3692. PubMed
Hamulakova S., Janovec L., Hrabinova M., Kristian P., Kuca K., Banasova M. Synthesis, Design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2012;55:23–31. doi: 10.1016/j.ejmech.2012.06.051. PubMed DOI
Di Santo R., Costi R., Cuzzucoli Crucitti G., Pescatori L., Rosi F., Scipione L., Celona D., Vertechy M., Ghirardi O., Piovesan P., et al. Design, Synthesis, and Structure—activity relationship of N-arylnaphtylmine derivatives as amyloid aggregation inhibitors. J. Med. Chem. 2012;55:8538–8548. PubMed
Chen Y., Sun J., Fang L., Liu M., Peng S., Liao H., Lehmann J., Zhang Y. Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids os potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J. Med. Chem. 2012;55:4309–4321. doi: 10.1021/jm300106z. PubMed DOI
Fernandez-Bachiller M.I., Perez C., Monjas L., Rademann J., Rodriguez-Franco M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, Antioxidant, and β-amyloid-reducing. J. Med. Chem. 2012;55:1303–1317. PubMed
Galdeano C., Viayna E., Sola I., Formosa X., Camps P., Badia A., Clos M.V., Relat J., Ratia M., Bartolini M., et al. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion disease. J. Med. Chem. 2012;55:661–669. PubMed
Bolognesi M.L., Cavalli A., Valgimigli L., Bartolini M., Rosini M., Andrisano V., Recanatini M., Melchiorre C. Multi-target-directed drug design strategy: From a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J. Med. Chem. 2007;50:6446–6449. doi: 10.1021/jm701225u. PubMed DOI
Stetter H., Wulff C. Über Verbindungen mit Urotropin-Struktur, XXIV1) Derivative des 1-Amino-adamantans. Chem. Ber. 1962;95:2302–2304. doi: 10.1002/cber.19620950932. DOI
Munch H., Hansen J.S., Pittelkow M., Christensen J.B., Boas U. A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate. Tetrahedron Lett. 2008;49:3117–3119. doi: 10.1016/j.tetlet.2008.03.045. DOI
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI
Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T., Lee B., Ingram D.K., Lahiri D.K. A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17:159–165. PubMed
Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. PubMed PMC
Rydberg E.H., Brumshtein B., Greenblatt H.M., Wong D.M., Shaya D., Williams L.D., Carlier P.R., Pang Y.P., Silman I., Sussman J.L. Complexes of alkylene-liked tacrine dimers with Torpedo california acetylcholinesterase: Binding of Bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem. 2006;49:5491–5500. PubMed
Camps P., Formosa X., Galdeano C., Munoz-Torrero D., Ramirez L., Gomez E., Isambert N., Lavilla R., Badia A., Clos M.V., et al. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds. J. Med. Chem. 2009;52:5365–5379. PubMed
Fernandez-Bachiller M.I., Perez C., Campillo N.E., Paez J.A., Gonzales-Munoz G.C., Usan P., Garcia-Palomero E., Lopez M.G., Villarroya M., Garcia A.G., et al. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem. 2009;4:828–841. doi: 10.1002/cmdc.200800414. PubMed DOI
Haviv H., Wong D.M., Greenblatt H.M., Carlier P.R., Pang Y.P., Silman I., Sussman J.L. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase. J. Am. Chem. Soc. 2005;127:11029–11036. PubMed
Nicolet Y., Lockbridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003;278:41141–41147. PubMed
Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A., et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D Biol. Crystalogr. 2000;56:1385–1394. doi: 10.1107/S0907444900010659. PubMed DOI
DeLano W.L. The PyMOL Molecular Graphics System. [(accessed on 1 January 2002)]. Available online: http://www.pymol.org.
In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy
Synthesis and disinfection effect of the pyridine-4-aldoxime based salts