7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer's Disease Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
26690394
PubMed Central
PMC6331912
DOI
10.3390/molecules201219836
PII: molecules201219836
Knihovny.cz E-zdroje
- Klíčová slova
- 7-methoxy-tacrine, Alzheimer’s disease, MTDLs, acetylcholinesterase, butyrylcholinesterase, tacrine,
- MeSH
- acetylcholinesterasa chemie MeSH
- amyloidní beta-protein antagonisté a inhibitory chemie MeSH
- aniliny chemická syntéza chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie MeSH
- kinetika MeSH
- látky ovlivňující centrální nervový systém chemická syntéza chemie MeSH
- lidé MeSH
- rekombinantní proteiny chemie MeSH
- simulace molekulového dockingu MeSH
- takrin analogy a deriváty MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- amyloidní beta-protein MeSH
- aniliny MeSH
- cholinesterasové inhibitory MeSH
- látky ovlivňující centrální nervový systém MeSH
- rekombinantní proteiny MeSH
- takrin MeSH
Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder that ultimately leads to the patient's death. Despite the fact that novel pharmacological approaches endeavoring to block the neurodegenerative process are still emerging, none of them have reached use in clinical practice yet. Thus, palliative treatment represented by acetylcholinesterase inhibitors (AChEIs) and memantine are still the only therapeutics used. Following the multi-target directed ligands (MTDLs) strategy, herein we describe the synthesis, biological evaluation and docking studies for novel 7-methoxytacrine-p-anisidine hybrids designed to purposely target both cholinesterases and the amyloid cascade. Indeed, the novel derivatives proved to be effective non-specific cholinesterase inhibitors showing non-competitive AChE inhibition patterns. This compounds' behavior was confirmed in the subsequent molecular modeling studies.
Zobrazit více v PubMed
Alzheimer’s Association 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11:332–384. PubMed
Maresova P., Mohelska H., Dolejs J., Kuca K. Socio-economic aspects of Alzheimer’s disease. Curr. Alzheimer Res. 2015;12:903–911. doi: 10.2174/156720501209151019111448. PubMed DOI
Karran E., Mercken M., de Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011;10:698–712. doi: 10.1038/nrd3505. PubMed DOI
Ballatore C., Lee V.M.-Y., Trojanowski J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 2007;8:663–672. doi: 10.1038/nrn2194. PubMed DOI
Rosini M., Simoni E., Milelli A., Minarini A., Melchiorre C. Oxidative stress in Alzheimer’s disease: Are we connecting the dots? J. Med. Chem. 2014;57:2821–2831. doi: 10.1021/jm400970m. PubMed DOI
Schrag M., Mueller C., Oyoyo U., Smith M.A., Kirsch W.M. Iron, zinc and copper in the Alzheimer’s disease brain: A quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog. Neurobiol. 2011;94:296–306. doi: 10.1016/j.pneurobio.2011.05.001. PubMed DOI PMC
Contestabile A. The history of the cholinergic hypothesis. Behav. Brain Res. 2011;221:334–340. doi: 10.1016/j.bbr.2009.12.044. PubMed DOI
Bartus R.T., Dean R.L., Beer B., Lippa A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–414. doi: 10.1126/science.7046051. PubMed DOI
Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. PubMed
Johnson J.W., Glasgow N.G., Povysheva N.V. Recent insights into the mode of action of memantine and ketamine. Curr. Opin. Pharmacol. 2015;20:54–63. doi: 10.1016/j.coph.2014.11.006. PubMed DOI PMC
Summers W.K., Majovski L.V., Marsh G.M., Tachiki K., Kling A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N. Engl. J. Med. 1986;315:1241–1245. doi: 10.1056/NEJM198611133152001. PubMed DOI
Patocka J., Jun D., Kuca K. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease. Curr. Drug Metab. 2008;9:332–335. doi: 10.2174/138920008784220619. PubMed DOI
Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandikova J., et al. A resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI
Sepsova V., Karasova J.Z., Tobin G., Jun D., Korabecny J., Cabelova P., Janska K., Krusek J., Skrenkova K., Kuca K., et al. Cholinergic properties of new 7-methoxytacrine-donepezil derivatives. Gen. Physiol. Biophys. 2015;34:189–200. doi: 10.4149/gpb_2014036. PubMed DOI
Misik J., Korabecny J., Nepovimova E., Cabelova P., Kassa J. The effects of novel 7-MEOTA-donepezil like hybrids and N-alkylated tacrine analogues in the treatment of quinuclidinyl benzilate-induced behavioural deficits in rats performing the multiple T-maze test. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov. 2015 doi: 10.5507/bp.2015.006. PubMed DOI
Nepovimova E., Uliassi E., Korabecny J., Peña-Altamira L.E., Samez S., Pesaresi A., Garcia G.E., Bartolini M., Andrisano V., Bergamini C., et al. Multitarget drug design strategy: Quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 2014;57:8576–8589. doi: 10.1021/jm5010804. PubMed DOI
Korabecny J., Dolezal R., Cabelova P., Horova A., Hruba E., Ricny J., Sedlacek L., Nepovimova E., Spilovska K., Andrs M., et al. 7-MEOTA–donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2014;82:426–438. doi: 10.1016/j.ejmech.2014.05.066. PubMed DOI
Korabecny J., Musilek K., Holas O., Binder J., Zemek F., Marek J., Pohanka M., Opletalova V., Dohnal V., Kuca K. Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg. Med. Chem. Lett. 2010;20:6093–6095. doi: 10.1016/j.bmcl.2010.08.044. PubMed DOI
Korabecny J., Musilek K., Zemek F., Horova A., Holas O., Nepovimova E., Opletalova V., Hroudova J., Fisar Z., Jung Y.-S., et al. Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine—New tacrine derivate with cholinergic properties. Bioorg. Med. Chem. Lett. 2011;21:6563–6566. doi: 10.1016/j.bmcl.2011.08.042. PubMed DOI
Hamulakova S., Janovec L., Hrabinova M., Spilovska K., Korabecny J., Kristian P., Kuca K., Imrich J. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J. Med. Chem. 2014;57:7073–7084. doi: 10.1021/jm5008648. PubMed DOI
Korabecny J., Musilek K., Holas O., Nepovimova E., Jun D., Zemek F., Opletalova V., Patocka J., Dohnal V., Nachon F., et al. Synthesis and in vitro evaluation of N-(Bromobut-3-en-2-yl)-7-methoxy-1,2,3,4-tetrahydroacridin-9-amine as a cholinesterase inhibitor with regard to Alzheimer’s disease treatment. Mol. Basel Switz. 2010;15:8804–8812. doi: 10.3390/molecules15128804. PubMed DOI PMC
Minarini A., Milelli A., Simoni E., Rosini M., Bolognesi M.L., Marchetti C., Tumiatti V. Multifunctional tacrine derivatives in Alzheimer’s disease. Curr. Top. Med. Chem. 2013;13:1771–1786. doi: 10.2174/15680266113139990136. PubMed DOI
Carlier P.R., Chow E.S., Han Y., Liu J., el Yazal J., Pang Y.P. Heterodimeric tacrine-based acetylcholinesterase inhibitors: Investigating ligand-peripheral site interactions. J. Med. Chem. 1999;42:4225–4231. doi: 10.1021/jm990224w. PubMed DOI
Lee S.K., Park M.K., Jhang H.E., Yi J., Nahm K., Cho D.W., Ra C.S., Musilek K., Horova A., Korabecny J., et al. Preparation of 7-Methoxy Tacrine Dimer Analogs and Their in vitro/in silico Evaluation as Potential Cholinesterase Inhibitors. Bull. Korean Chem. Soc. 2015;36:1654–1660. doi: 10.1002/bkcs.10317. DOI
Silman I., Sussman J.L. Acetylcholinesterase: How is structure related to function? Chem. Biol. Interact. 2008;175:3–10. doi: 10.1016/j.cbi.2008.05.035. PubMed DOI
Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment—Synthesis, biological evaluation and molecular modeling studies. Mol. Basel Switz. 2013;18:2397–2418. doi: 10.3390/molecules18022397. PubMed DOI PMC
Spilovska K., Korabecny J., Horova A., Musilek K., Nepovimova E., Drtinova L., Gazova Z., Siposova K., Dolezal R., Jun D., et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: A novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med. Chem. Res. 2015;24:2645–2655. doi: 10.1007/s00044-015-1316-x. DOI
Recanatini M., Cavalli A., Hansch C. A comparative QSAR analysis of acetylcholinesterase inhibitors currently studied for the treatment of Alzheimer’s disease. Chem. Biol. Interact. 1997;105:199–228. doi: 10.1016/S0009-2797(97)00047-1. PubMed DOI
Iqbal J., Zaib S., Saeed A., Muddassar M. Biological Evaluation of Halogenated Thioureas as Cholinesterases Inhibitors against Alzheimer’s Disease & Molecular Modeling Studies. Lett. Drug Des. Discov. 2015;12:488–494.
Paula Lima A.C., Arriagada C., Toro R., Cárdenas A.M., Caviedes R., Ferreira S.T., Caviedes P. Small-molecule aggregation inhibitors reduce excess amyloid in a trisomy 16 mouse cortical cell line. Biol. Res. 2008;41:129–136. PubMed
Munch H., Hansen J.S., Pittelkow M., Christensen J.B., Boas U. A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate. Tetrahedron Lett. 2008;49:3117–3119. doi: 10.1016/j.tetlet.2008.03.045. DOI
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Pohanka M., Karasova J.Z., Kuca K., Pikula J., Holas O., Korabecny J., Cabal J. Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta. 2010;81:621–624. doi: 10.1016/j.talanta.2009.12.052. PubMed DOI
Geula C., Mesulam M.M. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1995;9(Suppl. 2):23–28. doi: 10.1097/00002093-199501002-00005. PubMed DOI
Darvesh S., Hopkins D.A., Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003;4:131–138. doi: 10.1038/nrn1035. PubMed DOI
Wilkinson D.G. The pharmacology of donepezil: A new treatment of Alzheimer’s disease. Expert Opin. Pharmacother. 1999;1:121–135. doi: 10.1517/14656566.1.1.121. PubMed DOI
Inestrosa N.C., Dinamarca M.C., Alvarez A. Amyloid-cholinesterase interactions. FEBS J. 2008;275:625–632. doi: 10.1111/j.1742-4658.2007.06238.x. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., Renard P. Crystal Structures of Human Cholinesterases in Complex with Huprine W and Tacrine: Elements of Specificity for Anti-Alzheimer’S Drugs Targeting Acetyl- and Butyrylcholinesterase. Biochem.J. 2012;453:393–399. doi: 10.1042/BJ20130013. PubMed DOI
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Dolezal R., Sobeslav V., Hornig O., Balik L., Korabecny J., Kuca K. HPC Cloud Technologies for Virtual Screening in Drug Discovery. In: Nguyen N.T., Trawiński B., Kosala R., editors. Intelligent Information and Database Systems. Springer International Publishing; Cham, Switzerland: 2015. pp. 440–449. Lecture Notes in Computer Science.
Dolezal R., Korabecny J., Malinak D., Honegr J., Musilek K., Kuca K. Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase. J. Mol. Graph. Model. 2015;56:113–129. doi: 10.1016/j.jmgm.2014.11.010. PubMed DOI
PoseView. [(accessed on 16 July 2012)]. Available online: http://poseview.zbh.uni-hamburg.de/poseview/wizard.
Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine—Trolox Hybrids: A Novel Class of Centrally Active, Non-Hepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low in Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI
Liu B., Wang L., Jin Y.-H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. B Cybern. Cybern. 2007;37:18–27. doi: 10.1109/TSMCB.2006.883272. PubMed DOI
Korábecný J., Hrubá E., Soukup O., Zemek F., Musílek K., Nepovímová E., Spilovská K., Opletalová V., Kuca K. Intended pharmacotherapeutical approaches of Alzheimer’s disease therapy. Ceská Slov. Farm. Cas. Ceské Farm. Spolecnosti Slov. Farm. Spolecnosti. 2012;61:4–10. PubMed
Cavalli A., Bolognesi M.L., Minarini A., Rosini M., Tumiatti V., Recanatini M., Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008;51:347–372. doi: 10.1021/jm7009364. PubMed DOI
León R., Garcia A.G., Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy