Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer's Activity Profile

. 2022 Feb 04 ; 27 (3) : . [epub] 20220204

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35164325

Grantová podpora
19-53-26016_a Russian Foundation for Basic Research
0090-2019-0005 IPAC RAS State Targets Project
20-29633J Czech Science Foundation
N/A Alternatives Research and Development Foundation
N/A Mcubed

Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 µM, IC50(BChE) = 0.13-0.067 µM, and 14-18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.

Zobrazit více v PubMed

Teich A.F., Nicholls R.E., Puzzo D., Fiorito J., Purgatorio R., Fa’ M., Arancio O. Synaptic Therapy in Alzheimer’s Disease: A CREB-centric Approach. Neurotherapeutics. 2015;12:29–41. doi: 10.1007/s13311-014-0327-5. PubMed DOI PMC

Bachurin S.O., Gavrilova S.I., Samsonova A., Barreto G.E., Aliev G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res. 2018;129:216–226. doi: 10.1016/j.phrs.2017.11.021. PubMed DOI

Carreiras M.C., Mendes E., Perry M.J., Francisco A.P., Marco-Contelles J. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr. Top. Med. Chem. 2013;13:1745–1770. doi: 10.2174/15680266113139990135. PubMed DOI

Bachurin S.O., Bovina E.V., Ustyugov A.A. Drugs in clinical trials for Alzheimer’s disease: The major trends. Med. Res. Rev. 2017;37:1186–1225. doi: 10.1002/med.21434. PubMed DOI

Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC

Martinez A., Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs. 2006;15:1–12. doi: 10.1517/13543784.15.1.1. PubMed DOI

Moreta M.P., Burgos-Alonso N., Torrecilla M., Marco-Contelles J., Bruzos-Cidón C. Efficacy of Acetylcholinesterase Inhibitors on Cognitive Function in Alzheimer’s Disease. Review of Reviews. Biomedicines. 2021;9:1689. doi: 10.3390/biomedicines9111689. PubMed DOI PMC

Mesulam M.M., Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 1994;36:722–727. doi: 10.1002/ana.410360506. PubMed DOI

Ballard C., Greig N., Guillozet-Bongaarts A., Enz A., Darvesh S. Cholinesterases: Roles in the Brain During Health and Disease. Curr. Alzheimer Res. 2005;2:307–318. doi: 10.2174/1567205054367838. PubMed DOI

Furukawa-Hibi Y., Alkam T., Nitta A., Matsuyama A., Mizoguchi H., Suzuki K., Moussaoui S., Yu Q.S., Greig N.H., Nagai T., et al. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-beta peptide in mice. Behav. Brain Res. 2011;225:222–229. doi: 10.1016/j.bbr.2011.07.035. PubMed DOI PMC

Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.S., Mamczarz J., Holloway H.W., Giordano T., et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC

Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharm. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI

Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15:01412. doi: 10.4088/PCC.12r01412. PubMed DOI PMC

Macdonald I.R., Rockwood K., Martin E., Darvesh S. Cholinesterase inhibition in Alzheimer’s disease: Is specificity the answer? J. Alzheimers Dis. 2014;42:379–384. doi: 10.3233/JAD-140219. PubMed DOI

Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC

Agatonovic-Kustrin S., Kettle C., Morton D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018;106:553–565. doi: 10.1016/j.biopha.2018.06.147. PubMed DOI

Hardy J., Bogdanovic N., Winblad B., Portelius E., Andreasen N., Cedazo-Minguez A., Zetterberg H. Pathways to Alzheimer’s disease. J. Intern. Med. 2014;275:296–303. doi: 10.1111/joim.12192. PubMed DOI

Ahmed M., Davis J., Aucoin D., Sato T., Ahuja S., Aimoto S., Elliott J.I., Van Nostrand W.E., Smith S.O. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat. Struct. Mol. Biol. 2010;17:561–567. doi: 10.1038/nsmb.1799. PubMed DOI PMC

Cleary J.P., Walsh D.M., Hofmeister J.J., Shankar G.M., Kuskowski M.A., Selkoe D.J., Ashe K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 2005;8:79–84. doi: 10.1038/nn1372. PubMed DOI

Selkoe D.J. Soluble Oligomers of the Amyloid β-Protein: Impair Synaptic Plasticity and Behavior. In: Selkoe D.J., Triller A., Christen Y., editors. Synaptic Plasticity and the Mechanism of Alzheimer’s Disease. Springer; Berlin/Heidelberg, Germany: 2008. pp. 89–102.

Jiang L., Huang M., Xu S., Wang Y., An P., Feng C., Chen X., Wei X., Han Y., Wang Q. Bis(propyl)-cognitin Prevents beta-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway. Mol. Neurobiol. 2016;53:3832–3841. doi: 10.1007/s12035-015-9317-9. PubMed DOI

Hu S., Xian Y., Fan Y., Mak S., Wang J., Tang J., Pang Y., Pi R., Tsim K.W., Liu F., et al. Significant combination of Aβ aggregation inhibitory and neuroprotective properties in silico, in vitro and in vivo by bis(propyl)-cognitin, a multifunctional anti-Alzheimer’s agent. Eur. J. Pharmacol. 2020;876:173065. doi: 10.1016/j.ejphar.2020.173065. PubMed DOI

Jeremic D., Jiménez-Díaz L., Navarro-López J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2021;72:101496. doi: 10.1016/j.arr.2021.101496. PubMed DOI

Moran M.A., Mufson E.J., Gomez-Ramos P. Cholinesterases colocalize with sites of neurofibrillary degeneration in aged and Alzheimer’s brains. Acta Neuropathol. 1994;87:284–292. doi: 10.1007/BF00296744. PubMed DOI

De Ferrari G.V., Canales M.A., Shin I., Weiner L.M., Silman I., Inestrosa N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry. 2001;40:10447–10457. doi: 10.1021/bi0101392. PubMed DOI

Lushchekina S.V., Kots E.D., Novichkova D.A., Petrov K.A., Masson P. Role of acetylcholinesterase in β-amyloid aggregation studied by accelerated molecular dynamics. BioNanoScience. 2016;7:396–402. doi: 10.1007/s12668-016-0375-x. DOI

Inestrosa N.C., Dinamarca M.C., Alvarez A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J. 2008;275:625–632. doi: 10.1111/j.1742-4658.2007.06238.x. PubMed DOI

Korabecny J., Andrs M., Nepovimova E., Dolezal R., Babkova K., Horova A., Malinak D., Mezeiova E., Gorecki L., Sepsova V., et al. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2015;20:22084–22101. doi: 10.3390/molecules201219836. PubMed DOI PMC

Lushchekina S.V., Makhaeva G.F., Novichkova D.A., Zueva I.V., Kovaleva N.V., Richardson R.J. Supercomputer modeling of dual-site acetylcholinesterase (AChE) inhibition. JSFI. 2018;5:89–97. doi: 10.14529/jsfi1804. DOI

Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., et al. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorg. Chem. 2020;94:103387. doi: 10.1016/j.bioorg.2019.103387. PubMed DOI

Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., et al. Corrigendum to “Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation”. [Bioorg. Chem. 94C (2019)] Bioorg. Chem. 2020;96:103563. doi: 10.1016/j.bioorg.2019.103563. PubMed DOI

Makhaeva G.F., Kovaleva N.V., Rudakova E.V., Boltneva N.P., Lushchekina S.V., Faingold I.I., Poletaeva D.A., Soldatova Y.V., Kotelnikova R.A., Serkov I.V., et al. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer’s Disease Treatment. Molecules. 2020;25:5891. doi: 10.3390/molecules25245891. PubMed DOI PMC

Camps P., Formosa X., Galdeano C., Gomez T., Munoz-Torrero D., Ramirez L., Viayna E., Gomez E., Isambert N., Lavilla R., et al. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates. Chem. Biol. Interact. 2010;187:411–415. doi: 10.1016/j.cbi.2010.02.013. PubMed DOI

Panek D., Wichur T., Godyn J., Pasieka A., Malawska B. Advances toward multifunctional cholinesterase and beta-amyloid aggregation inhibitors. Future Med. Chem. 2017;9:1835–1854. doi: 10.4155/fmc-2017-0094. PubMed DOI

Zueva I., Dias J., Lushchekina S., Semenov V., Mukhamedyarov M., Pashirova T., Babaev V., Nachon F., Petrova N., Nurullin L., et al. New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer’s disease. Neuropharmacology. 2019;155:131–141. doi: 10.1016/j.neuropharm.2019.05.025. PubMed DOI

Ramanan V.K., Risacher S.L., Nho K., Kim S., Swaminathan S., Shen L., Foroud T.M., Hakonarson H., Huentelman M.J., Aisen P.S., et al. APOE and BCHE as modulators of cerebral amyloid deposition: A florbetapir PET genome-wide association study. Mol. Psychiatry. 2014;19:351–357. doi: 10.1038/mp.2013.19. PubMed DOI PMC

Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:1173–1177. doi: 10.2174/1567205013666160404120542. PubMed DOI

Radi E., Formichi P., Battisti C., Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis. 2014;42((Suppl. S3)):S125–S152. doi: 10.3233/JAD-132738. PubMed DOI

Huang W.J., Zhang X., Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. PubMed DOI PMC

Savelieff M.G., Nam G., Kang J., Lee H.J., Lee M., Lim M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 2019;119:1221–1322. doi: 10.1021/acs.chemrev.8b00138. PubMed DOI

Pohanka M. Oxidative stress in Alzheimer disease as a target for therapy. Bratisl. Lek. Listy. 2018;119:535–543. doi: 10.4149/BLL_2018_097. PubMed DOI

Cassidy L., Fernandez F., Johnson J.B., Naiker M., Owoola A.G., Broszczak D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020;49:102294. doi: 10.1016/j.ctim.2019.102294. PubMed DOI

Chakrabarti S., Sinha M., Thakurta I., Banerjee P., Chattopadhyay M. Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Curr. Med. Chem. 2013;20:4648–4664. doi: 10.2174/09298673113209990152. PubMed DOI

Papagiouvannis G., Theodosis-Nobelos P., Kourounakis P.N., Rekka E.A. Multi-Target Directed Compounds with Antioxidant and/or Anti- Inflammatory Properties as Potent Agents for Alzheimer’s Disease. Med. Chem. 2021;17:1086–1103. doi: 10.2174/1573406416666201013161303. PubMed DOI

Rosini M., Simoni E., Bartolini M., Tarozzi A., Matera R., Milelli A., Hrelia P., Andrisano V., Bolognesi M.L., Melchiorre C. Exploiting the lipoic acid structure in the search for novel multitarget ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2011;46:5435–5442. doi: 10.1016/j.ejmech.2011.09.001. PubMed DOI

Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low in Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI

Makhaeva G.F., Serkov I.V., Kovaleva N.V., Rudakova E.V., Boltneva N.P., Kochetkova E.A., Proshin A.N., Bachurin S.O. Novel conjugates of 4-Amino-2,3-polymethylenequinolines and vanillin as potential multitarget agents for AD treatment. Mendeleev Commun. 2021;31:606–608. doi: 10.1016/j.mencom.2021.09.005. DOI

Skrzypek A., Matysiak J., Karpińska M., Czarnecka K., Kręcisz P., Stary D., Kukułowicz J., Paw B., Bajda M., Szymański P., et al. Biological evaluation and molecular docking of novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorg. Chem. 2021;107:104617. doi: 10.1016/j.bioorg.2020.104617. PubMed DOI

Rosini M., Simoni E., Minarini A., Melchiorre C. Multi-target design strategies in the context of Alzheimer’s disease: Acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res. 2014;39:1914–1923. doi: 10.1007/s11064-014-1250-1. PubMed DOI

Gonzalez J.F., Alcantara A.R., Doadrio A.L., Sanchez-Montero J.M. Developments with multi-target drugs for Alzheimer’s disease: An overview of the current discovery approaches. Expert Opin. Drug Discov. 2019;14:879–891. doi: 10.1080/17460441.2019.1623201. PubMed DOI

Bolognesi M.L., Cavalli A. Multitarget Drug Discovery and Polypharmacology. ChemMedChem. 2016;11:1190–1192. doi: 10.1002/cmdc.201600161. PubMed DOI

Bolognesi M.L. Harnessing Polypharmacology with Medicinal Chemistry. ACS Med. Chem. Lett. 2019;10:273–275. doi: 10.1021/acsmedchemlett.9b00039. PubMed DOI PMC

Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC

Oset-Gasque M.J., Marco-Contelles J. Alzheimer’s Disease, the “One-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 2018;9:401–403. doi: 10.1021/acschemneuro.8b00069. PubMed DOI

Pasieka A., Panek D., Malawska B. Multifunctional Ligand Approach: Search for Effective Therapy Against Alzheimer’s Disease. In: Huang X., editor. Alzheimer’s Disease: Drug Discovery. Exon Publications; Brisbane, Australia: 2020. pp. 181–203. PubMed

Rosini M., Simoni E., Bartolini M., Soriano E., Marco-Contelles J., Andrisano V., Monti B., Windisch M., Hutter-Paier B., McClymont D.W., et al. The bivalent ligand approach as a tool for improving the in vitro anti-Alzheimer multitarget profile of dimebon. ChemMedChem. 2013;8:1276–1281. doi: 10.1002/cmdc.201300263. PubMed DOI

Decker M. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase. J. Med. Chem. 2006;49:5411–5413. doi: 10.1021/jm060682m. PubMed DOI

Sameem B., Saeedi M., Mahdavi M., Shafiee A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem. 2017;128:332–345. doi: 10.1016/j.ejmech.2016.10.060. PubMed DOI

Leon R., Garcia A.G., Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI

Otto R., Penzis R., Gaube F., Adolph O., Fohr K.J., Warncke P., Robaa D., Appenroth D., Fleck C., Enzensperger C., et al. Evaluation of Homobivalent Carbolines as Designed Multiple Ligands for the Treatment of Neurodegenerative Disorders. J. Med. Chem. 2015;58:6710–6715. doi: 10.1021/acs.jmedchem.5b00958. PubMed DOI

Chang L., Cui W., Yang Y., Xu S., Zhou W., Fu H., Hu S., Mak S., Hu J., Wang Q., et al. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin. Sci. Rep. 2015;5:10256. doi: 10.1038/srep10256. PubMed DOI PMC

Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Pushkareva E.A., Serkova T.P., Dubova L.G., et al. Bis-γ-carbolines as new potential multitarget agents for Alzheimer’s disease. Pure Appl. Chem. 2020;92:1057–1080. doi: 10.1515/pac-2019-1206. DOI

Milelli A., De Simone A., Ticchi N., Chen H.H., Betari N., Andrisano V., Tumiatti V. Tacrine-based Multifunctional Agents in Alzheimer’s Disease: An Old Story in Continuous Development. Curr. Med. Chem. 2017;24:3522–3546. doi: 10.2174/0929867324666170309123920. PubMed DOI

Spilovska K., Korabecny J., Nepovimova E., Dolezal R., Mezeiova E., Soukup O., Kuca K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem. 2017;17:1006–1026. doi: 10.2174/1568026605666160927152728. PubMed DOI

Nepovimova E., Svobodova L., Dolezal R., Hepnarova V., Junova L., Jun D., Korabecny J., Kucera T., Gazova Z., Motykova K., et al. Tacrine—Benzothiazoles: Novel class of potential multitarget anti-Alzheimers drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorg. Chem. 2021;107:104596. doi: 10.1016/j.bioorg.2020.104596. PubMed DOI

Tian S., Huang Z., Meng Q., Liu Z. Multi-Target Drug Design of Anti-Alzheimer’s Disease based on Tacrine. Mini Rev. Med. Chem. 2021;21:2039–2064. doi: 10.2174/1389557521666210212151127. PubMed DOI

Li W., Mak M., Jiang H., Wang Q., Pang Y., Chen K., Han Y. Novel anti-Alzheimer’s dimer bis(7)-Cognitin: Cellular and molecular mechanisms of neuroprotection through multiple targets. Neurotherapeutics. 2009;6:187–201. doi: 10.1016/j.nurt.2008.10.040. PubMed DOI PMC

Roldan-Pena J.M., Alejandre-Ramos D., Lopez O., Maya I., Lagunes I., Padron J.M., Pena-Altamira L.E., Bartolini M., Monti B., Bolognesi M.L., et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem. 2017;138:761–773. doi: 10.1016/j.ejmech.2017.06.048. PubMed DOI

Sanchez-Vidana D.I., Chow J.K.W., Hu S.Q., Lau B.W.M., Han Y.F. Molecular Targets of Bis (7)-Cognitin and Its Relevance in Neurological Disorders: A Systematic Review. Front. Neurosci. 2019;13:445. doi: 10.3389/fnins.2019.00445. PubMed DOI PMC

Kluša V., Rumaks J., Karajeva Ñ. Neuromidin Attenuates Neuropathic Pain in the Streptozocin-Induced Diabetes Model in Rats. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2008;62:85–90. doi: 10.2478/v10046-008-0024-z. DOI

Damulin I.V., Stepkina D.A., Lokshina A.B. Neuromidin in mixed vascular and Alzheimer’s dementia. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2011;111:40–43. PubMed

Zhivolupov S.A., Onischenko L.S., Rashidov N.A., Samartsev I.N., Jakovlev E.V. Spinal mechanisms of neuroplasticity induced by neuromidin in treatment of traumatic neuropathies. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2018;118:58–64. doi: 10.17116/jnevro20181182158-64. PubMed DOI

Zhivolupov S.A., Rashidov N.A., Samartsev I.N., Jakovlev E.V. A comparative analysis of the efficacy of neuromidin and galantamine in Alzheimer’s disease. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2015;115:22–27. doi: 10.17116/jnevro201511510222-27. PubMed DOI

Oros M.M. The use of parenteral forms of ipidacrine in the treatment of the central and peripheral nervous system diseases. Int. J. Neurol. 2018;(6.100):23–26. doi: 10.22141/2224-0713.6.100.2018.146454. DOI

Litvinenko I.V., Zhivolupov S.A., Samartsev I.N., Kravchuk A.Y., Vorobyova M.N., Yakovlev E.V., Butakova Y.S. The Cholinergic Profile as a Target for Rational Therapy of Central Nervous System Diseases and Injuries. Neurosci. Behav. Physiol. 2020;50:1112–1118. doi: 10.1007/s11055-020-01012-y. PubMed DOI

Kojima J., Onodera K., Ozeki M., Nakayama K. Ipidacrine (NIK-247): A Review of Multiple Mechanisms as an Antidementia Agent. CNS Drug Rev. 1998;4:247–259. doi: 10.1111/j.1527-3458.1998.tb00067.x. DOI

Shevtsov P.N., Shevtsova E.F., Burbaeva G., Bachurin S.O. Effects of anti-Alzheimer drugs on phosphorylation and assembly of microtubules from brain microtubular proteins. Bull. Exp. Biol. Med. 2014;156:768–772. doi: 10.1007/s10517-014-2445-9. PubMed DOI

Makhaeva G.F., Lushchekina S.V., Kovaleva N.V., Yu Astakhova T., Boltneva N.P., Rudakova E.V., Serebryakova O.G., Proshin A.N., Serkov I.V., Trofimova T.P., et al. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer’s disease treatment. Bioorg. Chem. 2021;112:104974. doi: 10.1016/j.bioorg.2021.104974. PubMed DOI

Yoshida S., Suzuki N. Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur. J. Pharmacol. 1993;250:117–124. doi: 10.1016/0014-2999(93)90628-U. PubMed DOI

Zhidkova A., Berlyand A., Knizhnik A., Lavretskaya E., Robakidze T., Sukhanova S., Mufazalova T. Synthesis and pharmacological properties of amiridine analogs. Pharm. Chem. J. 1989;23:709–712. doi: 10.1007/BF00764431. DOI

Zhidkova A.M., Goizman M.S., Berlyand A.S., Knizhnik A.Z., Khabarova L.S. Measurement of Amiridine And Its Structural Analogs by Acidometric Titration. Khim. Farm. Zh. 1989;23:1401–1404.

Makhaeva G.F., Rudakova E.V., Kovaleva N.V., Lushchekina S.V., Boltneva N.P., Proshin A.N., Shchegolkov E.V., Burgart Y.V., Saloutin V.I. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ. Chem. Bull. 2019;68:967–984. doi: 10.1007/s11172-019-2507-2. DOI

Makhaeva G.F., Rudakova E.V., Serebryakova O.G., Aksinenko A.Y., Lushchekina S.V., Bachurin S.O., Richardson R.J. Esterase profiles of organophosphorus compounds in vitro predict their behavior in vivo. Chem. Biol. Interact. 2016;259:332–342. doi: 10.1016/j.cbi.2016.05.002. PubMed DOI

Makhaeva G.F., Boltneva N.P., Lushchekina S.V., Serebryakova O.G., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Bachurin S.O., Richardson R.J. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg. Med. Chem. 2016;24:1050–1062. doi: 10.1016/j.bmc.2016.01.031. PubMed DOI

Makhaeva G.F., Lushchekina S.V., Boltneva N.P., Sokolov V.B., Grigoriev V.V., Serebryakova O.G., Vikhareva E.A., Aksinenko A.Y., Barreto G.E., Aliev G., et al. Conjugates of g-carbolines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease. Sci. Rep. 2015;5:13164. doi: 10.1038/srep13164. PubMed DOI PMC

Makhaeva G.F., Radchenko E.V., Palyulin V.A., Rudakova E.V., Aksinenko A.Y., Sokolov V.B., Zefirov N.S., Richardson R.J. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem. Biol. Interact. 2013;203:231–237. doi: 10.1016/j.cbi.2012.10.012. PubMed DOI

Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Astakhova T.Y., Rudakova E.V., Proshin A.N., Serkov I.V., Radchenko E.V., Palyulin V.A., et al. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer’s Disease Treatment. Molecules. 2020;25:3915. doi: 10.3390/molecules25173915. PubMed DOI PMC

Bartolini M., Bertucci C., Cavrini V., Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol. 2003;65:407–416. doi: 10.1016/S0006-2952(02)01514-9. PubMed DOI

Arce M.P., Rodriguez-Franco M.I., Gonzalez-Munoz G.C., Perez C., Lopez B., Villarroya M., Lopez M.G., Garcia A.G., Conde S. Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer’s disease. J. Med. Chem. 2009;52:7249–7257. doi: 10.1021/jm900628z. PubMed DOI

Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., et al. Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules. 2021;26:5527. doi: 10.3390/molecules26185527. PubMed DOI PMC

Ghotbi G., Mahdavi M., Najafi Z., Moghadam F.H., Hamzeh-Mivehroud M., Davaran S., Dastmalchi S. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and beta-amyloid aggregation for Alzheimer’s disease. Bioorg. Chem. 2020;103:104186. doi: 10.1016/j.bioorg.2020.104186. PubMed DOI

Sanchez Montero J.M., Agis-Torres A., Solano D., Sollhuber M., Fernandez M., Villaro W., Gomez-Canas M., Garcia-Arencibia M., Fernandez-Ruiz J., Egea J., et al. Analogues of cannabinoids as multitarget drugs in the treatment of Alzheimer’s disease. Eur. J. Pharmacol. 2021;895:173875. doi: 10.1016/j.ejphar.2021.173875. PubMed DOI

Munoz-Ruiz P., Rubio L., Garcia-Palomero E., Dorronsoro I., del Monte-Millan M., Valenzuela R., Usan P., de Austria C., Bartolini M., Andrisano V., et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: New disease-modifying agents for Alzheimer’s disease. J. Med. Chem. 2005;48:7223–7233. doi: 10.1021/jm0503289. PubMed DOI

Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI

Pavan Kumar H., Kumara H.K., Suhas R., Channe Gowda D. Multitarget-directed therapeutics: (Urea/thiourea)2 derivatives of diverse heterocyclic-Lys conjugates. Arch. Pharm. 2021;354:e2000468. doi: 10.1002/ardp.202000468. PubMed DOI

Ozgeris B. Design, synthesis, characterization, and biological evaluation of nicotinoyl thioureas as antimicrobial and antioxidant agents. J. Antibiot. 2021;74:233–243. doi: 10.1038/s41429-020-00399-7. PubMed DOI

Huong D.Q., Bay M.V., Nam P.C. Antioxidant activity of thiourea derivatives: An experimental and theoretical study. J. Mol. Liq. 2021;340:117149. doi: 10.1016/j.molliq.2021.117149. DOI

Naz S., Zahoor M., Umar M.N., Alghamdi S., Sahibzada M.U.K., UlBari W. Synthesis, characterization, and pharmacological evaluation of thiourea derivatives. Open Chem. 2020;18:764–777. doi: 10.1515/chem-2020-0139. DOI

Prasad A.K., Mishra P.C. Scavenging of superoxide radical anion and hydroxyl radical by urea, thiourea, selenourea and their derivatives without any catalyst: A theoretical study. Chem. Phys. Lett. 2017;684:197–204. doi: 10.1016/j.cplett.2017.06.040. DOI

Taylor P., Lappi S. Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry. 1975;14:1989–1997. doi: 10.1021/bi00680a029. PubMed DOI

Taylor P., Lwebuga-Mukasa J., Lappi S., Rademacher J. Propidium—A fluorescence probe for a peripheral anionic site on acetylcholinesterase. Mol. Pharm. 1974;10:703–708.

Konagurthu A.S., Whisstock J.C., Stuckey P.J., Lesk A.M. MUSTANG: A multiple structural alignment algorithm. Proteins. 2006;64:559–574. doi: 10.1002/prot.20921. PubMed DOI

Krieger E., Vriend G. YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics. 2014;30:2981–2982. doi: 10.1093/bioinformatics/btu426. PubMed DOI PMC

Biancalana M., Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. 2010;1804:1405–1412. doi: 10.1016/j.bbapap.2010.04.001. PubMed DOI PMC

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Benzie I.F.F., Strain J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/s0076-6879(99)99005-5. PubMed DOI

Hawkins P.C., Skillman A.G., Warren G.L., Ellingson B.A., Stahl M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010;50:572–584. doi: 10.1021/ci100031x. PubMed DOI PMC

Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI

Löwdin P.-O. On the nonorthogonality problem. In: Per-Olov L., editor. Advances in Quantum Chemistry. Volume 5. Academic Press; New York, NY, USA: London, UK: 1970. pp. 185–199.

Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI

Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI

Masson P., Lushchekina S., Schopfer L.M., Lockridge O. Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: Kinetic and molecular dynamics studies. Biochem. J. 2013;454:387–399. doi: 10.1042/BJ20130389. PubMed DOI

Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comp. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Sushko I., Novotarskyi S., Korner R., Pandey A.K., Rupp M., Teetz W., Brandmaier S., Abdelaziz A., Prokopenko V.V., Tanchuk V.Y., et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 2011;25:533–554. doi: 10.1007/s10822-011-9440-2. PubMed DOI PMC

Radchenko E.V., Dyabina A.S., Palyulin V.A., Zefirov N.S. Prediction of human intestinal absorption of drug compounds. Russ. Chem. Bull. 2016;65:576–580. doi: 10.1007/s11172-016-1340-0. DOI

Dyabina A.S., Radchenko E.V., Palyulin V.A., Zefirov N.S. Prediction of blood-brain barrier permeability of organic compounds. Dokl. Biochem. Biophys. 2016;470:371–374. doi: 10.1134/S1607672916050173. PubMed DOI

Radchenko E.V., Dyabina A.S., Palyulin V.A. Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds. Molecules. 2020;25:5901. doi: 10.3390/molecules25245901. PubMed DOI PMC

Radchenko E.V., Rulev Y.A., Safanyaev A.Y., Palyulin V.A., Zefirov N.S. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Dokl. Biochem. Biophys. 2017;473:128–131. doi: 10.1134/S1607672917020107. PubMed DOI

ADMET Prediction Service. [(accessed on 15 December 2021)]. Available online: http://qsar.chem.msu.ru/admet/

Bickerton G.R., Paolini G.V., Besnard J., Muresan S., Hopkins A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012;4:90–98. doi: 10.1038/nchem.1243. PubMed DOI PMC

RDKit: Open-Source Cheminformatics Software. [(accessed on 15 December 2021)]. Available online: http://www.rdkit.org.

Voevodin V., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin V., Zhumatiy S. Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. JSFI. 2019;6:4–11. doi: 10.14529/jsfi190201. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace