Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer's Activity Profile
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-53-26016_a
Russian Foundation for Basic Research
0090-2019-0005
IPAC RAS State Targets Project
20-29633J
Czech Science Foundation
N/A
Alternatives Research and Development Foundation
N/A
Mcubed
PubMed
35164325
PubMed Central
PMC8839189
DOI
10.3390/molecules27031060
PII: molecules27031060
Knihovny.cz E-resources
- Keywords
- ADMET, Alzheimer’s disease (AD), N-acylamide, acetylcholinesterase (AChE), amiridine, antioxidants, butyrylcholinesterase (BChE), neuroprotection, thiourea, β-amyloid (Aβ42),
- MeSH
- Acetylcholinesterase MeSH
- Alzheimer Disease drug therapy MeSH
- Aminoquinolines chemistry MeSH
- Antioxidants chemistry pharmacology MeSH
- Butyrylcholinesterase chemistry MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- GPI-Linked Proteins antagonists & inhibitors MeSH
- Kinetics MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Neuroprotective Agents chemistry pharmacology MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- ACHE protein, human MeSH Browser
- Aminoquinolines MeSH
- amiridine MeSH Browser
- Antioxidants MeSH
- BCHE protein, human MeSH Browser
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- GPI-Linked Proteins MeSH
- Neuroprotective Agents MeSH
Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC50(AChE) = 2.9-1.4 µM, IC50(BChE) = 0.13-0.067 µM, and 14-18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.
Biomedical Research Centre University Hospital Hradec Kralove 500 05 Hradec Kralove Czech Republic
Center of Computational Medicine and Bioinformatics University of Michigan Ann Arbor MI 48109 USA
Department of Chemistry Lomonosov Moscow State University 119991 Moscow Russia
Department of Environmental Health Sciences University of Michigan Ann Arbor MI 48109 USA
Department of Neurology University of Michigan Ann Arbor MI 48109 USA
Emanuel Institute of Biochemical Physics Russian Academy of Sciences 119334 Moscow Russia
See more in PubMed
Teich A.F., Nicholls R.E., Puzzo D., Fiorito J., Purgatorio R., Fa’ M., Arancio O. Synaptic Therapy in Alzheimer’s Disease: A CREB-centric Approach. Neurotherapeutics. 2015;12:29–41. doi: 10.1007/s13311-014-0327-5. PubMed DOI PMC
Bachurin S.O., Gavrilova S.I., Samsonova A., Barreto G.E., Aliev G. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res. 2018;129:216–226. doi: 10.1016/j.phrs.2017.11.021. PubMed DOI
Carreiras M.C., Mendes E., Perry M.J., Francisco A.P., Marco-Contelles J. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr. Top. Med. Chem. 2013;13:1745–1770. doi: 10.2174/15680266113139990135. PubMed DOI
Bachurin S.O., Bovina E.V., Ustyugov A.A. Drugs in clinical trials for Alzheimer’s disease: The major trends. Med. Res. Rev. 2017;37:1186–1225. doi: 10.1002/med.21434. PubMed DOI
Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC
Martinez A., Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs. 2006;15:1–12. doi: 10.1517/13543784.15.1.1. PubMed DOI
Moreta M.P., Burgos-Alonso N., Torrecilla M., Marco-Contelles J., Bruzos-Cidón C. Efficacy of Acetylcholinesterase Inhibitors on Cognitive Function in Alzheimer’s Disease. Review of Reviews. Biomedicines. 2021;9:1689. doi: 10.3390/biomedicines9111689. PubMed DOI PMC
Mesulam M.M., Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 1994;36:722–727. doi: 10.1002/ana.410360506. PubMed DOI
Ballard C., Greig N., Guillozet-Bongaarts A., Enz A., Darvesh S. Cholinesterases: Roles in the Brain During Health and Disease. Curr. Alzheimer Res. 2005;2:307–318. doi: 10.2174/1567205054367838. PubMed DOI
Furukawa-Hibi Y., Alkam T., Nitta A., Matsuyama A., Mizoguchi H., Suzuki K., Moussaoui S., Yu Q.S., Greig N.H., Nagai T., et al. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-beta peptide in mice. Behav. Brain Res. 2011;225:222–229. doi: 10.1016/j.bbr.2011.07.035. PubMed DOI PMC
Greig N.H., Utsuki T., Ingram D.K., Wang Y., Pepeu G., Scali C., Yu Q.S., Mamczarz J., Holloway H.W., Giordano T., et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA. 2005;102:17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC
Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharm. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 2013;15:01412. doi: 10.4088/PCC.12r01412. PubMed DOI PMC
Macdonald I.R., Rockwood K., Martin E., Darvesh S. Cholinesterase inhibition in Alzheimer’s disease: Is specificity the answer? J. Alzheimers Dis. 2014;42:379–384. doi: 10.3233/JAD-140219. PubMed DOI
Kandiah N., Pai M.C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC
Agatonovic-Kustrin S., Kettle C., Morton D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018;106:553–565. doi: 10.1016/j.biopha.2018.06.147. PubMed DOI
Hardy J., Bogdanovic N., Winblad B., Portelius E., Andreasen N., Cedazo-Minguez A., Zetterberg H. Pathways to Alzheimer’s disease. J. Intern. Med. 2014;275:296–303. doi: 10.1111/joim.12192. PubMed DOI
Ahmed M., Davis J., Aucoin D., Sato T., Ahuja S., Aimoto S., Elliott J.I., Van Nostrand W.E., Smith S.O. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat. Struct. Mol. Biol. 2010;17:561–567. doi: 10.1038/nsmb.1799. PubMed DOI PMC
Cleary J.P., Walsh D.M., Hofmeister J.J., Shankar G.M., Kuskowski M.A., Selkoe D.J., Ashe K.H. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 2005;8:79–84. doi: 10.1038/nn1372. PubMed DOI
Selkoe D.J. Soluble Oligomers of the Amyloid β-Protein: Impair Synaptic Plasticity and Behavior. In: Selkoe D.J., Triller A., Christen Y., editors. Synaptic Plasticity and the Mechanism of Alzheimer’s Disease. Springer; Berlin/Heidelberg, Germany: 2008. pp. 89–102.
Jiang L., Huang M., Xu S., Wang Y., An P., Feng C., Chen X., Wei X., Han Y., Wang Q. Bis(propyl)-cognitin Prevents beta-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway. Mol. Neurobiol. 2016;53:3832–3841. doi: 10.1007/s12035-015-9317-9. PubMed DOI
Hu S., Xian Y., Fan Y., Mak S., Wang J., Tang J., Pang Y., Pi R., Tsim K.W., Liu F., et al. Significant combination of Aβ aggregation inhibitory and neuroprotective properties in silico, in vitro and in vivo by bis(propyl)-cognitin, a multifunctional anti-Alzheimer’s agent. Eur. J. Pharmacol. 2020;876:173065. doi: 10.1016/j.ejphar.2020.173065. PubMed DOI
Jeremic D., Jiménez-Díaz L., Navarro-López J.D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2021;72:101496. doi: 10.1016/j.arr.2021.101496. PubMed DOI
Moran M.A., Mufson E.J., Gomez-Ramos P. Cholinesterases colocalize with sites of neurofibrillary degeneration in aged and Alzheimer’s brains. Acta Neuropathol. 1994;87:284–292. doi: 10.1007/BF00296744. PubMed DOI
De Ferrari G.V., Canales M.A., Shin I., Weiner L.M., Silman I., Inestrosa N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry. 2001;40:10447–10457. doi: 10.1021/bi0101392. PubMed DOI
Lushchekina S.V., Kots E.D., Novichkova D.A., Petrov K.A., Masson P. Role of acetylcholinesterase in β-amyloid aggregation studied by accelerated molecular dynamics. BioNanoScience. 2016;7:396–402. doi: 10.1007/s12668-016-0375-x. DOI
Inestrosa N.C., Dinamarca M.C., Alvarez A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J. 2008;275:625–632. doi: 10.1111/j.1742-4658.2007.06238.x. PubMed DOI
Korabecny J., Andrs M., Nepovimova E., Dolezal R., Babkova K., Horova A., Malinak D., Mezeiova E., Gorecki L., Sepsova V., et al. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2015;20:22084–22101. doi: 10.3390/molecules201219836. PubMed DOI PMC
Lushchekina S.V., Makhaeva G.F., Novichkova D.A., Zueva I.V., Kovaleva N.V., Richardson R.J. Supercomputer modeling of dual-site acetylcholinesterase (AChE) inhibition. JSFI. 2018;5:89–97. doi: 10.14529/jsfi1804. DOI
Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., et al. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorg. Chem. 2020;94:103387. doi: 10.1016/j.bioorg.2019.103387. PubMed DOI
Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Radchenko E.V., et al. Corrigendum to “Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation”. [Bioorg. Chem. 94C (2019)] Bioorg. Chem. 2020;96:103563. doi: 10.1016/j.bioorg.2019.103563. PubMed DOI
Makhaeva G.F., Kovaleva N.V., Rudakova E.V., Boltneva N.P., Lushchekina S.V., Faingold I.I., Poletaeva D.A., Soldatova Y.V., Kotelnikova R.A., Serkov I.V., et al. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer’s Disease Treatment. Molecules. 2020;25:5891. doi: 10.3390/molecules25245891. PubMed DOI PMC
Camps P., Formosa X., Galdeano C., Gomez T., Munoz-Torrero D., Ramirez L., Viayna E., Gomez E., Isambert N., Lavilla R., et al. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates. Chem. Biol. Interact. 2010;187:411–415. doi: 10.1016/j.cbi.2010.02.013. PubMed DOI
Panek D., Wichur T., Godyn J., Pasieka A., Malawska B. Advances toward multifunctional cholinesterase and beta-amyloid aggregation inhibitors. Future Med. Chem. 2017;9:1835–1854. doi: 10.4155/fmc-2017-0094. PubMed DOI
Zueva I., Dias J., Lushchekina S., Semenov V., Mukhamedyarov M., Pashirova T., Babaev V., Nachon F., Petrova N., Nurullin L., et al. New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer’s disease. Neuropharmacology. 2019;155:131–141. doi: 10.1016/j.neuropharm.2019.05.025. PubMed DOI
Ramanan V.K., Risacher S.L., Nho K., Kim S., Swaminathan S., Shen L., Foroud T.M., Hakonarson H., Huentelman M.J., Aisen P.S., et al. APOE and BCHE as modulators of cerebral amyloid deposition: A florbetapir PET genome-wide association study. Mol. Psychiatry. 2014;19:351–357. doi: 10.1038/mp.2013.19. PubMed DOI PMC
Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:1173–1177. doi: 10.2174/1567205013666160404120542. PubMed DOI
Radi E., Formichi P., Battisti C., Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis. 2014;42((Suppl. S3)):S125–S152. doi: 10.3233/JAD-132738. PubMed DOI
Huang W.J., Zhang X., Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. PubMed DOI PMC
Savelieff M.G., Nam G., Kang J., Lee H.J., Lee M., Lim M.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 2019;119:1221–1322. doi: 10.1021/acs.chemrev.8b00138. PubMed DOI
Pohanka M. Oxidative stress in Alzheimer disease as a target for therapy. Bratisl. Lek. Listy. 2018;119:535–543. doi: 10.4149/BLL_2018_097. PubMed DOI
Cassidy L., Fernandez F., Johnson J.B., Naiker M., Owoola A.G., Broszczak D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020;49:102294. doi: 10.1016/j.ctim.2019.102294. PubMed DOI
Chakrabarti S., Sinha M., Thakurta I., Banerjee P., Chattopadhyay M. Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Curr. Med. Chem. 2013;20:4648–4664. doi: 10.2174/09298673113209990152. PubMed DOI
Papagiouvannis G., Theodosis-Nobelos P., Kourounakis P.N., Rekka E.A. Multi-Target Directed Compounds with Antioxidant and/or Anti- Inflammatory Properties as Potent Agents for Alzheimer’s Disease. Med. Chem. 2021;17:1086–1103. doi: 10.2174/1573406416666201013161303. PubMed DOI
Rosini M., Simoni E., Bartolini M., Tarozzi A., Matera R., Milelli A., Hrelia P., Andrisano V., Bolognesi M.L., Melchiorre C. Exploiting the lipoic acid structure in the search for novel multitarget ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2011;46:5435–5442. doi: 10.1016/j.ejmech.2011.09.001. PubMed DOI
Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low in Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI
Makhaeva G.F., Serkov I.V., Kovaleva N.V., Rudakova E.V., Boltneva N.P., Kochetkova E.A., Proshin A.N., Bachurin S.O. Novel conjugates of 4-Amino-2,3-polymethylenequinolines and vanillin as potential multitarget agents for AD treatment. Mendeleev Commun. 2021;31:606–608. doi: 10.1016/j.mencom.2021.09.005. DOI
Skrzypek A., Matysiak J., Karpińska M., Czarnecka K., Kręcisz P., Stary D., Kukułowicz J., Paw B., Bajda M., Szymański P., et al. Biological evaluation and molecular docking of novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorg. Chem. 2021;107:104617. doi: 10.1016/j.bioorg.2020.104617. PubMed DOI
Rosini M., Simoni E., Minarini A., Melchiorre C. Multi-target design strategies in the context of Alzheimer’s disease: Acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res. 2014;39:1914–1923. doi: 10.1007/s11064-014-1250-1. PubMed DOI
Gonzalez J.F., Alcantara A.R., Doadrio A.L., Sanchez-Montero J.M. Developments with multi-target drugs for Alzheimer’s disease: An overview of the current discovery approaches. Expert Opin. Drug Discov. 2019;14:879–891. doi: 10.1080/17460441.2019.1623201. PubMed DOI
Bolognesi M.L., Cavalli A. Multitarget Drug Discovery and Polypharmacology. ChemMedChem. 2016;11:1190–1192. doi: 10.1002/cmdc.201600161. PubMed DOI
Bolognesi M.L. Harnessing Polypharmacology with Medicinal Chemistry. ACS Med. Chem. Lett. 2019;10:273–275. doi: 10.1021/acsmedchemlett.9b00039. PubMed DOI PMC
Ramsay R.R., Popovic-Nikolic M.R., Nikolic K., Uliassi E., Bolognesi M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018;7:3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Oset-Gasque M.J., Marco-Contelles J. Alzheimer’s Disease, the “One-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 2018;9:401–403. doi: 10.1021/acschemneuro.8b00069. PubMed DOI
Pasieka A., Panek D., Malawska B. Multifunctional Ligand Approach: Search for Effective Therapy Against Alzheimer’s Disease. In: Huang X., editor. Alzheimer’s Disease: Drug Discovery. Exon Publications; Brisbane, Australia: 2020. pp. 181–203. PubMed
Rosini M., Simoni E., Bartolini M., Soriano E., Marco-Contelles J., Andrisano V., Monti B., Windisch M., Hutter-Paier B., McClymont D.W., et al. The bivalent ligand approach as a tool for improving the in vitro anti-Alzheimer multitarget profile of dimebon. ChemMedChem. 2013;8:1276–1281. doi: 10.1002/cmdc.201300263. PubMed DOI
Decker M. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase. J. Med. Chem. 2006;49:5411–5413. doi: 10.1021/jm060682m. PubMed DOI
Sameem B., Saeedi M., Mahdavi M., Shafiee A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem. 2017;128:332–345. doi: 10.1016/j.ejmech.2016.10.060. PubMed DOI
Leon R., Garcia A.G., Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 2013;33:139–189. doi: 10.1002/med.20248. PubMed DOI
Otto R., Penzis R., Gaube F., Adolph O., Fohr K.J., Warncke P., Robaa D., Appenroth D., Fleck C., Enzensperger C., et al. Evaluation of Homobivalent Carbolines as Designed Multiple Ligands for the Treatment of Neurodegenerative Disorders. J. Med. Chem. 2015;58:6710–6715. doi: 10.1021/acs.jmedchem.5b00958. PubMed DOI
Chang L., Cui W., Yang Y., Xu S., Zhou W., Fu H., Hu S., Mak S., Hu J., Wang Q., et al. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin. Sci. Rep. 2015;5:10256. doi: 10.1038/srep10256. PubMed DOI PMC
Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Rudakova E.V., Pushkareva E.A., Serkova T.P., Dubova L.G., et al. Bis-γ-carbolines as new potential multitarget agents for Alzheimer’s disease. Pure Appl. Chem. 2020;92:1057–1080. doi: 10.1515/pac-2019-1206. DOI
Milelli A., De Simone A., Ticchi N., Chen H.H., Betari N., Andrisano V., Tumiatti V. Tacrine-based Multifunctional Agents in Alzheimer’s Disease: An Old Story in Continuous Development. Curr. Med. Chem. 2017;24:3522–3546. doi: 10.2174/0929867324666170309123920. PubMed DOI
Spilovska K., Korabecny J., Nepovimova E., Dolezal R., Mezeiova E., Soukup O., Kuca K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem. 2017;17:1006–1026. doi: 10.2174/1568026605666160927152728. PubMed DOI
Nepovimova E., Svobodova L., Dolezal R., Hepnarova V., Junova L., Jun D., Korabecny J., Kucera T., Gazova Z., Motykova K., et al. Tacrine—Benzothiazoles: Novel class of potential multitarget anti-Alzheimers drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorg. Chem. 2021;107:104596. doi: 10.1016/j.bioorg.2020.104596. PubMed DOI
Tian S., Huang Z., Meng Q., Liu Z. Multi-Target Drug Design of Anti-Alzheimer’s Disease based on Tacrine. Mini Rev. Med. Chem. 2021;21:2039–2064. doi: 10.2174/1389557521666210212151127. PubMed DOI
Li W., Mak M., Jiang H., Wang Q., Pang Y., Chen K., Han Y. Novel anti-Alzheimer’s dimer bis(7)-Cognitin: Cellular and molecular mechanisms of neuroprotection through multiple targets. Neurotherapeutics. 2009;6:187–201. doi: 10.1016/j.nurt.2008.10.040. PubMed DOI PMC
Roldan-Pena J.M., Alejandre-Ramos D., Lopez O., Maya I., Lagunes I., Padron J.M., Pena-Altamira L.E., Bartolini M., Monti B., Bolognesi M.L., et al. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem. 2017;138:761–773. doi: 10.1016/j.ejmech.2017.06.048. PubMed DOI
Sanchez-Vidana D.I., Chow J.K.W., Hu S.Q., Lau B.W.M., Han Y.F. Molecular Targets of Bis (7)-Cognitin and Its Relevance in Neurological Disorders: A Systematic Review. Front. Neurosci. 2019;13:445. doi: 10.3389/fnins.2019.00445. PubMed DOI PMC
Kluša V., Rumaks J., Karajeva Ñ. Neuromidin Attenuates Neuropathic Pain in the Streptozocin-Induced Diabetes Model in Rats. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2008;62:85–90. doi: 10.2478/v10046-008-0024-z. DOI
Damulin I.V., Stepkina D.A., Lokshina A.B. Neuromidin in mixed vascular and Alzheimer’s dementia. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2011;111:40–43. PubMed
Zhivolupov S.A., Onischenko L.S., Rashidov N.A., Samartsev I.N., Jakovlev E.V. Spinal mechanisms of neuroplasticity induced by neuromidin in treatment of traumatic neuropathies. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2018;118:58–64. doi: 10.17116/jnevro20181182158-64. PubMed DOI
Zhivolupov S.A., Rashidov N.A., Samartsev I.N., Jakovlev E.V. A comparative analysis of the efficacy of neuromidin and galantamine in Alzheimer’s disease. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova. 2015;115:22–27. doi: 10.17116/jnevro201511510222-27. PubMed DOI
Oros M.M. The use of parenteral forms of ipidacrine in the treatment of the central and peripheral nervous system diseases. Int. J. Neurol. 2018;(6.100):23–26. doi: 10.22141/2224-0713.6.100.2018.146454. DOI
Litvinenko I.V., Zhivolupov S.A., Samartsev I.N., Kravchuk A.Y., Vorobyova M.N., Yakovlev E.V., Butakova Y.S. The Cholinergic Profile as a Target for Rational Therapy of Central Nervous System Diseases and Injuries. Neurosci. Behav. Physiol. 2020;50:1112–1118. doi: 10.1007/s11055-020-01012-y. PubMed DOI
Kojima J., Onodera K., Ozeki M., Nakayama K. Ipidacrine (NIK-247): A Review of Multiple Mechanisms as an Antidementia Agent. CNS Drug Rev. 1998;4:247–259. doi: 10.1111/j.1527-3458.1998.tb00067.x. DOI
Shevtsov P.N., Shevtsova E.F., Burbaeva G., Bachurin S.O. Effects of anti-Alzheimer drugs on phosphorylation and assembly of microtubules from brain microtubular proteins. Bull. Exp. Biol. Med. 2014;156:768–772. doi: 10.1007/s10517-014-2445-9. PubMed DOI
Makhaeva G.F., Lushchekina S.V., Kovaleva N.V., Yu Astakhova T., Boltneva N.P., Rudakova E.V., Serebryakova O.G., Proshin A.N., Serkov I.V., Trofimova T.P., et al. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer’s disease treatment. Bioorg. Chem. 2021;112:104974. doi: 10.1016/j.bioorg.2021.104974. PubMed DOI
Yoshida S., Suzuki N. Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur. J. Pharmacol. 1993;250:117–124. doi: 10.1016/0014-2999(93)90628-U. PubMed DOI
Zhidkova A., Berlyand A., Knizhnik A., Lavretskaya E., Robakidze T., Sukhanova S., Mufazalova T. Synthesis and pharmacological properties of amiridine analogs. Pharm. Chem. J. 1989;23:709–712. doi: 10.1007/BF00764431. DOI
Zhidkova A.M., Goizman M.S., Berlyand A.S., Knizhnik A.Z., Khabarova L.S. Measurement of Amiridine And Its Structural Analogs by Acidometric Titration. Khim. Farm. Zh. 1989;23:1401–1404.
Makhaeva G.F., Rudakova E.V., Kovaleva N.V., Lushchekina S.V., Boltneva N.P., Proshin A.N., Shchegolkov E.V., Burgart Y.V., Saloutin V.I. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ. Chem. Bull. 2019;68:967–984. doi: 10.1007/s11172-019-2507-2. DOI
Makhaeva G.F., Rudakova E.V., Serebryakova O.G., Aksinenko A.Y., Lushchekina S.V., Bachurin S.O., Richardson R.J. Esterase profiles of organophosphorus compounds in vitro predict their behavior in vivo. Chem. Biol. Interact. 2016;259:332–342. doi: 10.1016/j.cbi.2016.05.002. PubMed DOI
Makhaeva G.F., Boltneva N.P., Lushchekina S.V., Serebryakova O.G., Stupina T.S., Terentiev A.A., Serkov I.V., Proshin A.N., Bachurin S.O., Richardson R.J. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg. Med. Chem. 2016;24:1050–1062. doi: 10.1016/j.bmc.2016.01.031. PubMed DOI
Makhaeva G.F., Lushchekina S.V., Boltneva N.P., Sokolov V.B., Grigoriev V.V., Serebryakova O.G., Vikhareva E.A., Aksinenko A.Y., Barreto G.E., Aliev G., et al. Conjugates of g-carbolines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease. Sci. Rep. 2015;5:13164. doi: 10.1038/srep13164. PubMed DOI PMC
Makhaeva G.F., Radchenko E.V., Palyulin V.A., Rudakova E.V., Aksinenko A.Y., Sokolov V.B., Zefirov N.S., Richardson R.J. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem. Biol. Interact. 2013;203:231–237. doi: 10.1016/j.cbi.2012.10.012. PubMed DOI
Makhaeva G.F., Kovaleva N.V., Boltneva N.P., Lushchekina S.V., Astakhova T.Y., Rudakova E.V., Proshin A.N., Serkov I.V., Radchenko E.V., Palyulin V.A., et al. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer’s Disease Treatment. Molecules. 2020;25:3915. doi: 10.3390/molecules25173915. PubMed DOI PMC
Bartolini M., Bertucci C., Cavrini V., Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem. Pharmacol. 2003;65:407–416. doi: 10.1016/S0006-2952(02)01514-9. PubMed DOI
Arce M.P., Rodriguez-Franco M.I., Gonzalez-Munoz G.C., Perez C., Lopez B., Villarroya M., Lopez M.G., Garcia A.G., Conde S. Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer’s disease. J. Med. Chem. 2009;52:7249–7257. doi: 10.1021/jm900628z. PubMed DOI
Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., et al. Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules. 2021;26:5527. doi: 10.3390/molecules26185527. PubMed DOI PMC
Ghotbi G., Mahdavi M., Najafi Z., Moghadam F.H., Hamzeh-Mivehroud M., Davaran S., Dastmalchi S. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and beta-amyloid aggregation for Alzheimer’s disease. Bioorg. Chem. 2020;103:104186. doi: 10.1016/j.bioorg.2020.104186. PubMed DOI
Sanchez Montero J.M., Agis-Torres A., Solano D., Sollhuber M., Fernandez M., Villaro W., Gomez-Canas M., Garcia-Arencibia M., Fernandez-Ruiz J., Egea J., et al. Analogues of cannabinoids as multitarget drugs in the treatment of Alzheimer’s disease. Eur. J. Pharmacol. 2021;895:173875. doi: 10.1016/j.ejphar.2021.173875. PubMed DOI
Munoz-Ruiz P., Rubio L., Garcia-Palomero E., Dorronsoro I., del Monte-Millan M., Valenzuela R., Usan P., de Austria C., Bartolini M., Andrisano V., et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: New disease-modifying agents for Alzheimer’s disease. J. Med. Chem. 2005;48:7223–7233. doi: 10.1021/jm0503289. PubMed DOI
Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI
Pavan Kumar H., Kumara H.K., Suhas R., Channe Gowda D. Multitarget-directed therapeutics: (Urea/thiourea)2 derivatives of diverse heterocyclic-Lys conjugates. Arch. Pharm. 2021;354:e2000468. doi: 10.1002/ardp.202000468. PubMed DOI
Ozgeris B. Design, synthesis, characterization, and biological evaluation of nicotinoyl thioureas as antimicrobial and antioxidant agents. J. Antibiot. 2021;74:233–243. doi: 10.1038/s41429-020-00399-7. PubMed DOI
Huong D.Q., Bay M.V., Nam P.C. Antioxidant activity of thiourea derivatives: An experimental and theoretical study. J. Mol. Liq. 2021;340:117149. doi: 10.1016/j.molliq.2021.117149. DOI
Naz S., Zahoor M., Umar M.N., Alghamdi S., Sahibzada M.U.K., UlBari W. Synthesis, characterization, and pharmacological evaluation of thiourea derivatives. Open Chem. 2020;18:764–777. doi: 10.1515/chem-2020-0139. DOI
Prasad A.K., Mishra P.C. Scavenging of superoxide radical anion and hydroxyl radical by urea, thiourea, selenourea and their derivatives without any catalyst: A theoretical study. Chem. Phys. Lett. 2017;684:197–204. doi: 10.1016/j.cplett.2017.06.040. DOI
Taylor P., Lappi S. Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry. 1975;14:1989–1997. doi: 10.1021/bi00680a029. PubMed DOI
Taylor P., Lwebuga-Mukasa J., Lappi S., Rademacher J. Propidium—A fluorescence probe for a peripheral anionic site on acetylcholinesterase. Mol. Pharm. 1974;10:703–708.
Konagurthu A.S., Whisstock J.C., Stuckey P.J., Lesk A.M. MUSTANG: A multiple structural alignment algorithm. Proteins. 2006;64:559–574. doi: 10.1002/prot.20921. PubMed DOI
Krieger E., Vriend G. YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics. 2014;30:2981–2982. doi: 10.1093/bioinformatics/btu426. PubMed DOI PMC
Biancalana M., Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. 2010;1804:1405–1412. doi: 10.1016/j.bbapap.2010.04.001. PubMed DOI PMC
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Benzie I.F.F., Strain J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/s0076-6879(99)99005-5. PubMed DOI
Hawkins P.C., Skillman A.G., Warren G.L., Ellingson B.A., Stahl M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010;50:572–584. doi: 10.1021/ci100031x. PubMed DOI PMC
Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112. DOI
Löwdin P.-O. On the nonorthogonality problem. In: Per-Olov L., editor. Advances in Quantum Chemistry. Volume 5. Academic Press; New York, NY, USA: London, UK: 1970. pp. 185–199.
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI
Masson P., Lushchekina S., Schopfer L.M., Lockridge O. Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: Kinetic and molecular dynamics studies. Biochem. J. 2013;454:387–399. doi: 10.1042/BJ20130389. PubMed DOI
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comp. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Sushko I., Novotarskyi S., Korner R., Pandey A.K., Rupp M., Teetz W., Brandmaier S., Abdelaziz A., Prokopenko V.V., Tanchuk V.Y., et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 2011;25:533–554. doi: 10.1007/s10822-011-9440-2. PubMed DOI PMC
Radchenko E.V., Dyabina A.S., Palyulin V.A., Zefirov N.S. Prediction of human intestinal absorption of drug compounds. Russ. Chem. Bull. 2016;65:576–580. doi: 10.1007/s11172-016-1340-0. DOI
Dyabina A.S., Radchenko E.V., Palyulin V.A., Zefirov N.S. Prediction of blood-brain barrier permeability of organic compounds. Dokl. Biochem. Biophys. 2016;470:371–374. doi: 10.1134/S1607672916050173. PubMed DOI
Radchenko E.V., Dyabina A.S., Palyulin V.A. Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds. Molecules. 2020;25:5901. doi: 10.3390/molecules25245901. PubMed DOI PMC
Radchenko E.V., Rulev Y.A., Safanyaev A.Y., Palyulin V.A., Zefirov N.S. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Dokl. Biochem. Biophys. 2017;473:128–131. doi: 10.1134/S1607672917020107. PubMed DOI
ADMET Prediction Service. [(accessed on 15 December 2021)]. Available online: http://qsar.chem.msu.ru/admet/
Bickerton G.R., Paolini G.V., Besnard J., Muresan S., Hopkins A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012;4:90–98. doi: 10.1038/nchem.1243. PubMed DOI PMC
RDKit: Open-Source Cheminformatics Software. [(accessed on 15 December 2021)]. Available online: http://www.rdkit.org.
Voevodin V., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin V., Zhumatiy S. Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. JSFI. 2019;6:4–11. doi: 10.14529/jsfi190201. DOI