The Effect of Tacrine on Functional Response of the Lower Oesophageal Sphincter Assessed by Endoscopic Luminal Impedance Planimetry in Experimental Pigs

. 2024 Nov 25 ; 17 (12) : . [epub] 20241125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39770430

Grantová podpora
23-07570S Czech Science Foundation

Background/Objectives: Tacrine is a centrally active non-competitive reversible acetylcholinesterase inhibitor. It also exerts antagonising activity against N-methyl-D-aspartate receptors. Tacrine was approved for the treatment of Alzheimer's disease in 1993, but was withdrawn from clinical use in 2013 because of its hepatotoxicity and gastrointestinal side effects. Nevertheless, tacrine is currently facing a renewed wave of interest primarily due to several new tacrine-incorporated hybrids and derivates. There were two specific aims for this study: firstly, to explain the mechanisms of the adverse action of tacrine, as a distinctive example of a highly effective acetylcholinesterase inhibitor; and secondly to check whether luminal impedance planimetry is feasible for preclinical testing of possible side effects of compounds potentially toxic to the gastrointestinal tract. Methods: Six experimental pigs were used as the animal model in this study. Five major parameters were evaluated: luminal pressure (mmHg), estimated diameter (mm), cross-sectional area (mm2), distensibility (mm2/mmHg), and zone compliance (mm3/mmHg). All measurements were performed before and 360 min after intragastric administration of 200 mg tacrine (at the porcine tacrine Tmax). Results: This study consistently demonstrated an increase in luminal pressure (a directly measured indicator) for the particular balloon filling volumes used, and inversely a reciprocal decrease in the other parameters after tacrine administration. Conclusions: Endoscopic luminal impedance planimetry is a feasible method to evaluate functional response of the lower oesophageal sphincter to tacrine in experimental pigs. Tacrine did not compromise the function of the lower oesophageal sphincter either toward oesophageal spasms or, in contrast, decreased competence of the lower oesophageal sphincter.

Zobrazit více v PubMed

Davis K.L., Powchik P. Tacrine. Lancet. 1995;345:625–630. doi: 10.1016/S0140-6736(95)90526-X. PubMed DOI

Gorecki L., Misiachna A., Damborsky J., Dolezal R., Korabecny J., Cejkova L., Hakenova K., Chvojkova M., Karasova J.Z., Prchal L., et al. Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur. J. Med. Chem. 2021;219:113434. doi: 10.1016/j.ejmech.2021.113434. PubMed DOI

Horak M., Holubova K., Nepovimova E., Krusek J., Kaniakova M., Korabecny J., Vyklicky L., Kuca K., Stuchlik A., Ricny J., et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;75:54–62. doi: 10.1016/j.pnpbp.2017.01.003. PubMed DOI

Gracon S.I., Knapp M.J., Berghoff W.G., Pierce M., DeJong R., Lobbestael S.J., Symons J., Dombey S.L., Luscombe F.A., Kraemer D. Safety of tacrine: Clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis. Assoc. Disord. 1998;12:93–101. doi: 10.1097/00002093-199806000-00007. PubMed DOI

Chatellier G., Lacomblez L. Tacrine (tetrahydroaminoacridine; THA) and lecithin in senile dementia of the Alzheimer type: A multicentre trial. Groupe Français d’Etude de la Tetrahydroaminoacridine. Br. Med. J. 1990;300:495–499. doi: 10.1136/bmj.300.6723.495. PubMed DOI PMC

Ames D.J., Bhathal P.S., Davies B.M., Fraser J.R., Gibson P.R., Roberts S. Heterogeneity of adverse hepatic reactions to tetrahydroaminoacridine. Aust. N. Z. J. Med. 1990;20:193–195. doi: 10.1111/j.1445-5994.1990.tb01309.x. PubMed DOI

Gauthier S., Bouchard R., Lamontagne A., Bailey P., Bergman H., Ratner J., Tesfaye Y., Saint-Martin M., Bacher Y., Carrier L., et al. Tetrahydroaminoacridine-lecithin combination treatment in patients with intermediate-stage Alzheimer’s disease. Results of a Canadian double-blind, crossover, multicenter study. N. Engl. J. Med. 1990;322:1272–1276. doi: 10.1056/NEJM199005033221804. PubMed DOI

Hammel P., Larrey D., Bernuau J., Kalafat M., Fréneaux E., Babany G., Degott C., Feldmann G., Pessayre D., Benhamou J.-P. Acute hepatitis after tetrahydroaminoacridine administration for Alzheimer’s disease. J. Clin. Gastroenterol. 1990;12:329–331. doi: 10.1097/00004836-199006000-00021. PubMed DOI

Spilovska K., Korabecny J., Nepovimova E., Dolezal R., Mezeiova E., Soukup O., Kuca K. Multitarget Tacrine Hybrids with Neuroprotective Properties to Confront Alzheimer’s Disease. Curr. Top. Med. Chem. 2017;17:1006–1026. doi: 10.2174/1568026605666160927152728. PubMed DOI

O’Hara R., Mumenthaler M.S., Yesavage J.A. Update on Alzheimer’s disease: Recent findings and treatments. West. J. Med. 2000;172:115–120. doi: 10.1136/ewjm.172.2.115. PubMed DOI PMC

Bubley A., Erofeev A., Gorelkin P., Beloglazkina E., Majouga A., Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int. J. Mol. Sci. 2023;24:1717. doi: 10.3390/ijms24021717. PubMed DOI PMC

Novak M., Vajrychova M., Koutsilieri S., Sismanoglou D.-C., Kobrlova T., Prchal L., Svobodova B., Korabecny J., Zarybnicky T., Raisova-Stuchlikova L., et al. Tacrine First-Phase Biotransformation and Associated Hepatotoxicity: A Possible Way to Avoid Quinone Methide Formation. ACS Chem. Biol. 2023;18:1993–2002. doi: 10.1021/acschembio.3c00219. PubMed DOI

Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandíková J.R., et al. A resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI

Korabecny J., Andrs M., Nepovimova E., Dolezal R., Babkova K., Horova A., Malinak D., Mezeiova E., Gorecki L., Sepsova V., et al. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2015;20:22084–22101. doi: 10.3390/molecules201219836. PubMed DOI PMC

Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI

Hepnarova V., Korabecny J., Matouskova L., Jost P., Muckova L., Hrabinova M., Vykoukalova N., Kerhartova M., Kucera T., Dolezal R., et al. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem. 2018;150:292–306. doi: 10.1016/j.ejmech.2018.02.083. PubMed DOI

Chalupova K., Korabecny J., Bartolini M., Monti B., Lamba D., Caliandro R., Pesaresi A., Brazzolotto X., Gastellier A.-J., Nachon F., et al. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem. 2019;168:491–514. doi: 10.1016/j.ejmech.2019.02.021. PubMed DOI

Misiachna A., Svobodova B., Netolicky J., Chvojkova M., Kleteckova L., Prchal L., Novak M., Hrabinova M., Kucera T., Muckova L., et al. Phenoxytacrine derivatives: Low-toxicity neuroprotectants exerting affinity to ifenprodil-binding site and cholinesterase inhibition. Eur. J. Med. Chem. 2024;266:116130. doi: 10.1016/j.ejmech.2024.116130. PubMed DOI

Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., Jun D., Soukup O., Jimeno M.L., Marco-Contelles J., et al. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules. 2019;9:379. doi: 10.3390/biom9080379. PubMed DOI PMC

Novak M., Svobodova B., Konecny J., Kuratkova A., Nevosadova L., Prchal L., Korabecny J., Lauschke V., Soukup O., Kučera R. UHPLC-Orbitrap study of the first phase tacrine in vitro metabolites and related Alzheimer’s drug candidates using human liver microsomes. J. Pharm. Biomed. Anal. 2023;224:115154. doi: 10.1016/j.jpba.2022.115154. PubMed DOI

Chvojkova M., Kolar D., Kovacova K., Cejkova L., Misiachna A., Hakenova K., Gorecki L., Horak M., Korabecny J., Soukup O., et al. Pro-cognitive effects of dual tacrine derivatives acting as cholinesterase inhibitors and NMDA receptor antagonists. Biomed. Pharmacother. 2024;176:116821. doi: 10.1016/j.biopha.2024.116821. PubMed DOI

Bures J., Jun D., Hrabinova M., Tacheci I., Kvetina J., Pavlik M. Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro. Endocrinol. Lett. 2015;36((Suppl. S1)):150–155. PubMed

Lipshutz W., Cohen S. Physiological determinants of lower esophageal sphincter function. Gastroenterology. 1971;61:16–24. doi: 10.1016/S0016-5085(19)33624-8. PubMed DOI

Castell D.O. Physiology and pathophysiology of the lower esophageal sphincter. Pt 1Ann. Otol. Rhinol. Laryngol. 1975;84:569–575. doi: 10.1177/000348947508400501. PubMed DOI

Turijski V., Krustev A., Getova-Spassova D., Spassov V. Influence of tacrine on dopamine-induced reactions of the gastric smooth muscle of rats. Methods Find. Exp. Clin. Pharmacol. 2004;26:103–107. doi: 10.1358/mf.2004.26.2.800062. PubMed DOI

Wang C., Chen X., Xie P.Y. Electroacupuncture at PC6 or ST36 Influences the Effect of Tacrine on the Motility of Esophagus. Evid. Based Complement. Alternat. Med. 2014;2014:263489. doi: 10.1155/2014/263489. PubMed DOI PMC

Carlson D.A., Kou W., Lin Z., Hinchcliff M., Thakrar A., Falmagne S., Prescott J., Dorian E., Kahrilas P.J., Pandolfino J.E. Normal Values of Esophageal Distensibility and Distension-Induced Contractility Measured by Functional Luminal Imaging Probe Panometry. Clin. Gastroenterol. Hepatol. 2019;17:674–681.e1. doi: 10.1016/j.cgh.2018.07.042. PubMed DOI PMC

Clarke J.O., Ahuja N.K., Fernandez-Becker N.Q., Gregersen H., Kamal A.N., Khan A., Lynch K.L., Vela M.F. The functional lumen imaging probe in gastrointestinal disorders: The past, present, and future. Ann. N. Y. Acad. Sci. 2020;1482:16–25. doi: 10.1111/nyas.14463. PubMed DOI

Bredenoord A.J., Rancati F., Lin H., Schwartz N., Argov M. Normative values for esophageal functional lumen imaging probe measurements: A meta-analysis. Neurogastroenterol. Motil. 2022;34:e14419. doi: 10.1111/nmo.14419. PubMed DOI PMC

Vackova Z., Levenfus I., Pohl D. Interventional functional diagnostics in gastrointestinal endoscopy: Combining diagnostic and therapeutic tools in the endoscopy suite with the functional lumen imaging probe. Curr. Opin. Pharmacol. 2023;73:102414. doi: 10.1016/j.coph.2023.102414. PubMed DOI

Perretta S., Dallemagne B., Allemann P., Marescaux J. Heller myotomy and intraluminal fundoplication: A NOTES technique. Surg. Endosc. 2010;24:2903. doi: 10.1007/s00464-010-1073-3. Multimedia manuscript. PubMed DOI

Perretta S., Dallemagne B., Donatelli G., Diemunsch P., Marescaux J. Transoral endoscopic esophageal myotomy based on esophageal function testing in a survival porcine model. Gastrointest. Endosc. 2011;73:111–116. doi: 10.1016/j.gie.2010.09.009. PubMed DOI

O’Dea J., Siersema P.D. Esophageal dilation with integrated balloon imaging: Initial evaluation in a porcine model. Therap. Adv. Gastroenterol. 2013;6:109–114. doi: 10.1177/1756283X12467566. PubMed DOI PMC

Bermudez M.A.R., Swanson L., Townsend A., Hunter S.E., Saunders J.K., Wise K.B., Harris C., Fleury S., Cornell M.A., Cohen A., et al. Characterization of Swine Models of Benign Esophageal Stricture for the Evaluation of Esophageal Stents. Gastrointest. Endosc. 2015;81:AB529–AB530. doi: 10.1016/j.gie.2015.03.1802. DOI

Arroyo Vázquez J.A., Bergström M., Bligh S., McMahon B.P., Park P.O. Exploring pyloric dynamics in stenting using a distensibility technique. Neurogastroenterol. Motil. 2018;30:e13445. doi: 10.1111/nmo.13445. PubMed DOI

Gonzalez C., Kwak J.M., Davrieux F., Watanabe R., Marescaux J., Swanström L.L. Hybrid transgastric approach for the treatment of gastroesophageal junction pathologies. Dis. Esophagus. 2019;32:2. doi: 10.1093/dote/doy095. PubMed DOI

Ullal T.V., Marks S.L., Belafsky P.C., Conklin J.L., Pandolfino J.E. A Comparative Assessment of the Diagnosis of Swallowing Impairment and Gastroesophageal Reflux in Canines and Humans. Front. Vet. Sci. 2022;9:889331. doi: 10.3389/fvets.2022.889331. PubMed DOI PMC

Kararli T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 1995;16:351–380. doi: 10.1002/bdd.2510160502. PubMed DOI

Květina J., Varayil J., Ali S., Kuneš M., Bureš J., Tachecí I., Rejchrt S., Kopáčová M. Preclinical electrogastrography in experimental pigs. Interdiscip. Toxicol. 2010;3:53–58. doi: 10.2478/v10102-010-0011-5. PubMed DOI PMC

Suenderhauf C., Parrott N. A physiologically based pharmacokinetic model of the minipig: Data compilation and model implementation. Pharm. Res. 2013;30:1–15. doi: 10.1007/s11095-012-0911-5. PubMed DOI

Gonzalez L.M., Moeser A.J., Blikslager A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. 2015;166:12–27. doi: 10.1016/j.trsl.2015.01.004. PubMed DOI PMC

Bures J., Kvetina J., Tacheci I., Pavlik M., Kunes M., Rejchrt S., Kuca K., Kopacova M. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J. Appl. Biomed. 2015;13:273–277. doi: 10.1016/j.jab.2015.04.004. DOI

Květina J., Tachecí I., Pavlík M., Kopáčová M., Rejchrt S., Douda T., Kuneš M., Bureš J. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol. Res. 2015;64:S647–S652. doi: 10.33549/physiolres.933227. PubMed DOI

Bures J., Tacheci I., Kvetina J., Radochova V., Prchal L., Kohoutova D., Valis M., Novak M., Dolezal R., Kopacova M., et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules. 2021;26:2160. doi: 10.3390/molecules26082160. PubMed DOI PMC

Bures J., Tacheci I., Kvetina J., Radochova V., Kohoutova D., Valis M., Rejchrt S., Knoblochova V., Karasova J.Z. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals. 2021;14:590. doi: 10.3390/ph14060590. PubMed DOI PMC

Tsianou C.C., Kvetina J., Radochova V., Kohoutova D., Rejchrt S., Valis M., Karasova J.Z., Tacheci I., Knoblochova V., Soukup O., et al. The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2023;18:e0286386. doi: 10.1371/journal.pone.0286386. PubMed DOI PMC

Bures J., Kvetina J., Radochova V., Tacheci I., Peterova E., Herman D., Dolezal R., Kopacova M., Rejchrt S., Douda T., et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2020;15:e0227781. doi: 10.1371/journal.pone.0227781. PubMed DOI PMC

Knapp M.J., Knopman D.S., Solomon P.R., Pendlebury W.W., Davis C.S., Gracon S.I. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. J. Am. Med. Assoc. 1994;271:985–991. doi: 10.1001/jama.1994.03510370037029. PubMed DOI

Henze L.J., Koehl N.J., Bennett-Lenane H., Holm R., Grimm M., Schneider F., Weitschies W., Koziolek M., Griffin B.T. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur. J. Pharm. Sci. 2021;1:105627. doi: 10.1016/j.ejps.2020.105627. PubMed DOI

Liu W., Jin Y., Wilde P.J., Hou Y., Wang Y., Han J. Mechanisms, physiology, and recent research progress of gastric emptying. Crit. Rev. Food Sci. Nutr. 2021;61:2742–2755. doi: 10.1080/10408398.2020.1784841. PubMed DOI

Tacheci I., Radochova V., Kvetina J., Rejchrt S., Kopacova M., Bures J. Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience. Acta Medica (Hradec Kralove) 2015;58:131–134. doi: 10.14712/18059694.2016.5. PubMed DOI

Dantas R.O., Ferriolli E., Souza M.A. Gender effects on esophageal motility. Braz. J. Med. Biol. Res. 1998;31:539–544. doi: 10.1590/S0100-879X1998000400011. PubMed DOI

Dantas R.O., Alves L.M., Cassiani Rde A. Gender differences in proximal esophageal contractions. Arq. Gastroenterol. 2009;46:284–287. doi: 10.1590/S0004-28032009000400007. PubMed DOI

Novak M., Bureš J., Radochová V., Pejchal J., Prchal L., Soukup O. ADMET parameters of tacrine and its metabolites confirm unsuitability of Sus scrofa f. domestica model to study tacrine-associated hepatotoxicity. Chem-Biol. Interact. 2024. submitted .

Tveden-Nyborg P., Bergmann T.K., Lykkesfeldt J. Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin. Pharmacol. Toxicol. 2018;123:233–235. doi: 10.1111/bcpt.13059. PubMed DOI

Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123) Council of Europe; Strasbourg, France: 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace