The Effect of Tacrine on Functional Response of the Lower Oesophageal Sphincter Assessed by Endoscopic Luminal Impedance Planimetry in Experimental Pigs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07570S
Czech Science Foundation
PubMed
39770430
PubMed Central
PMC11678239
DOI
10.3390/ph17121588
PII: ph17121588
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, endoscopic luminal impedance planimetry, experimental pigs, lower oesophageal sphincter, tacrine,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Tacrine is a centrally active non-competitive reversible acetylcholinesterase inhibitor. It also exerts antagonising activity against N-methyl-D-aspartate receptors. Tacrine was approved for the treatment of Alzheimer's disease in 1993, but was withdrawn from clinical use in 2013 because of its hepatotoxicity and gastrointestinal side effects. Nevertheless, tacrine is currently facing a renewed wave of interest primarily due to several new tacrine-incorporated hybrids and derivates. There were two specific aims for this study: firstly, to explain the mechanisms of the adverse action of tacrine, as a distinctive example of a highly effective acetylcholinesterase inhibitor; and secondly to check whether luminal impedance planimetry is feasible for preclinical testing of possible side effects of compounds potentially toxic to the gastrointestinal tract. Methods: Six experimental pigs were used as the animal model in this study. Five major parameters were evaluated: luminal pressure (mmHg), estimated diameter (mm), cross-sectional area (mm2), distensibility (mm2/mmHg), and zone compliance (mm3/mmHg). All measurements were performed before and 360 min after intragastric administration of 200 mg tacrine (at the porcine tacrine Tmax). Results: This study consistently demonstrated an increase in luminal pressure (a directly measured indicator) for the particular balloon filling volumes used, and inversely a reciprocal decrease in the other parameters after tacrine administration. Conclusions: Endoscopic luminal impedance planimetry is a feasible method to evaluate functional response of the lower oesophageal sphincter to tacrine in experimental pigs. Tacrine did not compromise the function of the lower oesophageal sphincter either toward oesophageal spasms or, in contrast, decreased competence of the lower oesophageal sphincter.
Biomedical Research Centre University Hospital Hradec Kralove 500 05 Hradec Kralove Czech Republic
Department of Gastroenterology St Anne's University Hospital Brno 602 00 Brno Czech Republic
Section of Medical Information ANOVA CRO 160 00 Prague Czech Republic
Zobrazit více v PubMed
Davis K.L., Powchik P. Tacrine. Lancet. 1995;345:625–630. doi: 10.1016/S0140-6736(95)90526-X. PubMed DOI
Gorecki L., Misiachna A., Damborsky J., Dolezal R., Korabecny J., Cejkova L., Hakenova K., Chvojkova M., Karasova J.Z., Prchal L., et al. Structure-activity relationships of dually-acting acetylcholinesterase inhibitors derived from tacrine on N-methyl-d-Aspartate receptors. Eur. J. Med. Chem. 2021;219:113434. doi: 10.1016/j.ejmech.2021.113434. PubMed DOI
Horak M., Holubova K., Nepovimova E., Krusek J., Kaniakova M., Korabecny J., Vyklicky L., Kuca K., Stuchlik A., Ricny J., et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;75:54–62. doi: 10.1016/j.pnpbp.2017.01.003. PubMed DOI
Gracon S.I., Knapp M.J., Berghoff W.G., Pierce M., DeJong R., Lobbestael S.J., Symons J., Dombey S.L., Luscombe F.A., Kraemer D. Safety of tacrine: Clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis. Assoc. Disord. 1998;12:93–101. doi: 10.1097/00002093-199806000-00007. PubMed DOI
Chatellier G., Lacomblez L. Tacrine (tetrahydroaminoacridine; THA) and lecithin in senile dementia of the Alzheimer type: A multicentre trial. Groupe Français d’Etude de la Tetrahydroaminoacridine. Br. Med. J. 1990;300:495–499. doi: 10.1136/bmj.300.6723.495. PubMed DOI PMC
Ames D.J., Bhathal P.S., Davies B.M., Fraser J.R., Gibson P.R., Roberts S. Heterogeneity of adverse hepatic reactions to tetrahydroaminoacridine. Aust. N. Z. J. Med. 1990;20:193–195. doi: 10.1111/j.1445-5994.1990.tb01309.x. PubMed DOI
Gauthier S., Bouchard R., Lamontagne A., Bailey P., Bergman H., Ratner J., Tesfaye Y., Saint-Martin M., Bacher Y., Carrier L., et al. Tetrahydroaminoacridine-lecithin combination treatment in patients with intermediate-stage Alzheimer’s disease. Results of a Canadian double-blind, crossover, multicenter study. N. Engl. J. Med. 1990;322:1272–1276. doi: 10.1056/NEJM199005033221804. PubMed DOI
Hammel P., Larrey D., Bernuau J., Kalafat M., Fréneaux E., Babany G., Degott C., Feldmann G., Pessayre D., Benhamou J.-P. Acute hepatitis after tetrahydroaminoacridine administration for Alzheimer’s disease. J. Clin. Gastroenterol. 1990;12:329–331. doi: 10.1097/00004836-199006000-00021. PubMed DOI
Spilovska K., Korabecny J., Nepovimova E., Dolezal R., Mezeiova E., Soukup O., Kuca K. Multitarget Tacrine Hybrids with Neuroprotective Properties to Confront Alzheimer’s Disease. Curr. Top. Med. Chem. 2017;17:1006–1026. doi: 10.2174/1568026605666160927152728. PubMed DOI
O’Hara R., Mumenthaler M.S., Yesavage J.A. Update on Alzheimer’s disease: Recent findings and treatments. West. J. Med. 2000;172:115–120. doi: 10.1136/ewjm.172.2.115. PubMed DOI PMC
Bubley A., Erofeev A., Gorelkin P., Beloglazkina E., Majouga A., Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int. J. Mol. Sci. 2023;24:1717. doi: 10.3390/ijms24021717. PubMed DOI PMC
Novak M., Vajrychova M., Koutsilieri S., Sismanoglou D.-C., Kobrlova T., Prchal L., Svobodova B., Korabecny J., Zarybnicky T., Raisova-Stuchlikova L., et al. Tacrine First-Phase Biotransformation and Associated Hepatotoxicity: A Possible Way to Avoid Quinone Methide Formation. ACS Chem. Biol. 2023;18:1993–2002. doi: 10.1021/acschembio.3c00219. PubMed DOI
Soukup O., Jun D., Zdarova-Karasova J., Patocka J., Musilek K., Korabecny J., Krusek J., Kaniakova M., Sepsova V., Mandíková J.R., et al. A resurrection of 7-MEOTA: A comparison with tacrine. Curr. Alzheimer Res. 2013;10:893–906. doi: 10.2174/1567205011310080011. PubMed DOI
Korabecny J., Andrs M., Nepovimova E., Dolezal R., Babkova K., Horova A., Malinak D., Mezeiova E., Gorecki L., Sepsova V., et al. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2015;20:22084–22101. doi: 10.3390/molecules201219836. PubMed DOI PMC
Nepovimova E., Korabecny J., Dolezal R., Babkova K., Ondrejicek A., Jun D., Sepsova V., Horova A., Hrabinova M., Soukup O., et al. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015;58:8985–9003. doi: 10.1021/acs.jmedchem.5b01325. PubMed DOI
Hepnarova V., Korabecny J., Matouskova L., Jost P., Muckova L., Hrabinova M., Vykoukalova N., Kerhartova M., Kucera T., Dolezal R., et al. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem. 2018;150:292–306. doi: 10.1016/j.ejmech.2018.02.083. PubMed DOI
Chalupova K., Korabecny J., Bartolini M., Monti B., Lamba D., Caliandro R., Pesaresi A., Brazzolotto X., Gastellier A.-J., Nachon F., et al. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem. 2019;168:491–514. doi: 10.1016/j.ejmech.2019.02.021. PubMed DOI
Misiachna A., Svobodova B., Netolicky J., Chvojkova M., Kleteckova L., Prchal L., Novak M., Hrabinova M., Kucera T., Muckova L., et al. Phenoxytacrine derivatives: Low-toxicity neuroprotectants exerting affinity to ifenprodil-binding site and cholinesterase inhibition. Eur. J. Med. Chem. 2024;266:116130. doi: 10.1016/j.ejmech.2024.116130. PubMed DOI
Svobodova B., Mezeiova E., Hepnarova V., Hrabinova M., Muckova L., Kobrlova T., Jun D., Soukup O., Jimeno M.L., Marco-Contelles J., et al. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors. Biomolecules. 2019;9:379. doi: 10.3390/biom9080379. PubMed DOI PMC
Novak M., Svobodova B., Konecny J., Kuratkova A., Nevosadova L., Prchal L., Korabecny J., Lauschke V., Soukup O., Kučera R. UHPLC-Orbitrap study of the first phase tacrine in vitro metabolites and related Alzheimer’s drug candidates using human liver microsomes. J. Pharm. Biomed. Anal. 2023;224:115154. doi: 10.1016/j.jpba.2022.115154. PubMed DOI
Chvojkova M., Kolar D., Kovacova K., Cejkova L., Misiachna A., Hakenova K., Gorecki L., Horak M., Korabecny J., Soukup O., et al. Pro-cognitive effects of dual tacrine derivatives acting as cholinesterase inhibitors and NMDA receptor antagonists. Biomed. Pharmacother. 2024;176:116821. doi: 10.1016/j.biopha.2024.116821. PubMed DOI
Bures J., Jun D., Hrabinova M., Tacheci I., Kvetina J., Pavlik M. Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro. Endocrinol. Lett. 2015;36((Suppl. S1)):150–155. PubMed
Lipshutz W., Cohen S. Physiological determinants of lower esophageal sphincter function. Gastroenterology. 1971;61:16–24. doi: 10.1016/S0016-5085(19)33624-8. PubMed DOI
Castell D.O. Physiology and pathophysiology of the lower esophageal sphincter. Pt 1Ann. Otol. Rhinol. Laryngol. 1975;84:569–575. doi: 10.1177/000348947508400501. PubMed DOI
Turijski V., Krustev A., Getova-Spassova D., Spassov V. Influence of tacrine on dopamine-induced reactions of the gastric smooth muscle of rats. Methods Find. Exp. Clin. Pharmacol. 2004;26:103–107. doi: 10.1358/mf.2004.26.2.800062. PubMed DOI
Wang C., Chen X., Xie P.Y. Electroacupuncture at PC6 or ST36 Influences the Effect of Tacrine on the Motility of Esophagus. Evid. Based Complement. Alternat. Med. 2014;2014:263489. doi: 10.1155/2014/263489. PubMed DOI PMC
Carlson D.A., Kou W., Lin Z., Hinchcliff M., Thakrar A., Falmagne S., Prescott J., Dorian E., Kahrilas P.J., Pandolfino J.E. Normal Values of Esophageal Distensibility and Distension-Induced Contractility Measured by Functional Luminal Imaging Probe Panometry. Clin. Gastroenterol. Hepatol. 2019;17:674–681.e1. doi: 10.1016/j.cgh.2018.07.042. PubMed DOI PMC
Clarke J.O., Ahuja N.K., Fernandez-Becker N.Q., Gregersen H., Kamal A.N., Khan A., Lynch K.L., Vela M.F. The functional lumen imaging probe in gastrointestinal disorders: The past, present, and future. Ann. N. Y. Acad. Sci. 2020;1482:16–25. doi: 10.1111/nyas.14463. PubMed DOI
Bredenoord A.J., Rancati F., Lin H., Schwartz N., Argov M. Normative values for esophageal functional lumen imaging probe measurements: A meta-analysis. Neurogastroenterol. Motil. 2022;34:e14419. doi: 10.1111/nmo.14419. PubMed DOI PMC
Vackova Z., Levenfus I., Pohl D. Interventional functional diagnostics in gastrointestinal endoscopy: Combining diagnostic and therapeutic tools in the endoscopy suite with the functional lumen imaging probe. Curr. Opin. Pharmacol. 2023;73:102414. doi: 10.1016/j.coph.2023.102414. PubMed DOI
Perretta S., Dallemagne B., Allemann P., Marescaux J. Heller myotomy and intraluminal fundoplication: A NOTES technique. Surg. Endosc. 2010;24:2903. doi: 10.1007/s00464-010-1073-3. Multimedia manuscript. PubMed DOI
Perretta S., Dallemagne B., Donatelli G., Diemunsch P., Marescaux J. Transoral endoscopic esophageal myotomy based on esophageal function testing in a survival porcine model. Gastrointest. Endosc. 2011;73:111–116. doi: 10.1016/j.gie.2010.09.009. PubMed DOI
O’Dea J., Siersema P.D. Esophageal dilation with integrated balloon imaging: Initial evaluation in a porcine model. Therap. Adv. Gastroenterol. 2013;6:109–114. doi: 10.1177/1756283X12467566. PubMed DOI PMC
Bermudez M.A.R., Swanson L., Townsend A., Hunter S.E., Saunders J.K., Wise K.B., Harris C., Fleury S., Cornell M.A., Cohen A., et al. Characterization of Swine Models of Benign Esophageal Stricture for the Evaluation of Esophageal Stents. Gastrointest. Endosc. 2015;81:AB529–AB530. doi: 10.1016/j.gie.2015.03.1802. DOI
Arroyo Vázquez J.A., Bergström M., Bligh S., McMahon B.P., Park P.O. Exploring pyloric dynamics in stenting using a distensibility technique. Neurogastroenterol. Motil. 2018;30:e13445. doi: 10.1111/nmo.13445. PubMed DOI
Gonzalez C., Kwak J.M., Davrieux F., Watanabe R., Marescaux J., Swanström L.L. Hybrid transgastric approach for the treatment of gastroesophageal junction pathologies. Dis. Esophagus. 2019;32:2. doi: 10.1093/dote/doy095. PubMed DOI
Ullal T.V., Marks S.L., Belafsky P.C., Conklin J.L., Pandolfino J.E. A Comparative Assessment of the Diagnosis of Swallowing Impairment and Gastroesophageal Reflux in Canines and Humans. Front. Vet. Sci. 2022;9:889331. doi: 10.3389/fvets.2022.889331. PubMed DOI PMC
Kararli T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 1995;16:351–380. doi: 10.1002/bdd.2510160502. PubMed DOI
Květina J., Varayil J., Ali S., Kuneš M., Bureš J., Tachecí I., Rejchrt S., Kopáčová M. Preclinical electrogastrography in experimental pigs. Interdiscip. Toxicol. 2010;3:53–58. doi: 10.2478/v10102-010-0011-5. PubMed DOI PMC
Suenderhauf C., Parrott N. A physiologically based pharmacokinetic model of the minipig: Data compilation and model implementation. Pharm. Res. 2013;30:1–15. doi: 10.1007/s11095-012-0911-5. PubMed DOI
Gonzalez L.M., Moeser A.J., Blikslager A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. 2015;166:12–27. doi: 10.1016/j.trsl.2015.01.004. PubMed DOI PMC
Bures J., Kvetina J., Tacheci I., Pavlik M., Kunes M., Rejchrt S., Kuca K., Kopacova M. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J. Appl. Biomed. 2015;13:273–277. doi: 10.1016/j.jab.2015.04.004. DOI
Květina J., Tachecí I., Pavlík M., Kopáčová M., Rejchrt S., Douda T., Kuneš M., Bureš J. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol. Res. 2015;64:S647–S652. doi: 10.33549/physiolres.933227. PubMed DOI
Bures J., Tacheci I., Kvetina J., Radochova V., Prchal L., Kohoutova D., Valis M., Novak M., Dolezal R., Kopacova M., et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules. 2021;26:2160. doi: 10.3390/molecules26082160. PubMed DOI PMC
Bures J., Tacheci I., Kvetina J., Radochova V., Kohoutova D., Valis M., Rejchrt S., Knoblochova V., Karasova J.Z. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals. 2021;14:590. doi: 10.3390/ph14060590. PubMed DOI PMC
Tsianou C.C., Kvetina J., Radochova V., Kohoutova D., Rejchrt S., Valis M., Karasova J.Z., Tacheci I., Knoblochova V., Soukup O., et al. The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2023;18:e0286386. doi: 10.1371/journal.pone.0286386. PubMed DOI PMC
Bures J., Kvetina J., Radochova V., Tacheci I., Peterova E., Herman D., Dolezal R., Kopacova M., Rejchrt S., Douda T., et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2020;15:e0227781. doi: 10.1371/journal.pone.0227781. PubMed DOI PMC
Knapp M.J., Knopman D.S., Solomon P.R., Pendlebury W.W., Davis C.S., Gracon S.I. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. J. Am. Med. Assoc. 1994;271:985–991. doi: 10.1001/jama.1994.03510370037029. PubMed DOI
Henze L.J., Koehl N.J., Bennett-Lenane H., Holm R., Grimm M., Schneider F., Weitschies W., Koziolek M., Griffin B.T. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. Eur. J. Pharm. Sci. 2021;1:105627. doi: 10.1016/j.ejps.2020.105627. PubMed DOI
Liu W., Jin Y., Wilde P.J., Hou Y., Wang Y., Han J. Mechanisms, physiology, and recent research progress of gastric emptying. Crit. Rev. Food Sci. Nutr. 2021;61:2742–2755. doi: 10.1080/10408398.2020.1784841. PubMed DOI
Tacheci I., Radochova V., Kvetina J., Rejchrt S., Kopacova M., Bures J. Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience. Acta Medica (Hradec Kralove) 2015;58:131–134. doi: 10.14712/18059694.2016.5. PubMed DOI
Dantas R.O., Ferriolli E., Souza M.A. Gender effects on esophageal motility. Braz. J. Med. Biol. Res. 1998;31:539–544. doi: 10.1590/S0100-879X1998000400011. PubMed DOI
Dantas R.O., Alves L.M., Cassiani Rde A. Gender differences in proximal esophageal contractions. Arq. Gastroenterol. 2009;46:284–287. doi: 10.1590/S0004-28032009000400007. PubMed DOI
Novak M., Bureš J., Radochová V., Pejchal J., Prchal L., Soukup O. ADMET parameters of tacrine and its metabolites confirm unsuitability of Sus scrofa f. domestica model to study tacrine-associated hepatotoxicity. Chem-Biol. Interact. 2024. submitted .
Tveden-Nyborg P., Bergmann T.K., Lykkesfeldt J. Basic & Clinical Pharmacology & Toxicology Policy for Experimental and Clinical studies. Basic Clin. Pharmacol. Toxicol. 2018;123:233–235. doi: 10.1111/bcpt.13059. PubMed DOI
Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123) Council of Europe; Strasbourg, France: 2009.