Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13283S
Grantová Agentura České Republiky
PubMed
34207410
PubMed Central
PMC8234489
DOI
10.3390/ph14060590
PII: ph14060590
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer disease, electrogastrography, experimental pigs, galantamine, gastric motor dysmotility, small bowel transit time, wireless capsule enteroscopy,
- Publikační typ
- časopisecké články MeSH
Galantamine has been used as a treatment for Alzheimer disease. It has a unique, dual mode of action (inhibitor of acetylcholinesterase and allosteric modulator of nicotinic acetylcholine receptors). Nausea (in about 20%), vomiting (10%) and diarrhoea (5-7%) are the most common side effects. The aim of this study was to assess the effect of galantamine on porcine gastric myoelectric activity without (Group A) and with (Group B) dextran sodium sulphate (DSS)-induced gastrointestinal injury. Galantamine hydrobromide was administrated to twelve pigs as a single intragastric dose (24 mg). Gastric myoelectric activity was investigated by electrogastrography (EGG). Basal (15 min before galantamine administration) and study recordings after galantamine administration (300 min) were evaluated using a running spectral analysis. Results were expressed as dominant frequency of gastric slow waves and power analysis (areas of amplitudes). Altogether, 3780 one-minute EGG recordings were evaluated. In Group A, power was steady from basal values for 180 min, then gradually decreased till 270 min (p = 0.007). In Group B, there was a rapid gradual fall from basal values to those after 120 min (p = 0.007) till 300 min (p ˂ 0.001). In conclusion, galantamine alone revealed an unfavourable effect on porcine myoelectric activity assessed by gastric power. It can be a plausible explanation of galantamine-associated dyspepsia in humans. DSS caused further profound decrease of EGG power. That may indicate that underlying inflammatory, ischaemic or NSAIDs-induced condition of the intestine in humans can have aggravated the effect of galantamine on gastric myoelectric activity.
Zobrazit více v PubMed
Tan C.C., Yu J.T., Wang H.F., Tan M.S., Meng X.F., Wang C., Jiang T., Zhu X.C., Tan L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014;41:615–631. doi: 10.3233/JAD-132690. PubMed DOI
Hager K., Baseman A.S., Nye J.S., Brashear H.R., Han J., Sano M., Davis B., Richards H.M. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 2014;10:391–401. PubMed PMC
Korabecny J., Nepovimova E., Cikankova T., Spilovska K., Vaskova L., Mezeiova E., Kuca K., Hroudova J. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience. 2018;370:191–206. doi: 10.1016/j.neuroscience.2017.06.034. PubMed DOI
Tricco A.C., Ashoor H.M., Soobiah C., Rios P., Veroniki A.A., Hamid J.S., Ivory J.D., Khan P.A., Yazdi F., Ghassemi M., et al. Comparative effectiveness and safety of cognitive enhancers for treating Alzheimer’s disease: Systematic review and network metaanalysis. J. Am. Geriatr. Soc. 2018;66:170–178. doi: 10.1111/jgs.15069. PubMed DOI
Pohanka M. Inhibitors of cholinesterases in pharmacology: The current trends. Mini Rev. Med. Chem. 2020;20:1532–1542. doi: 10.2174/1389557519666191018170908. PubMed DOI
Lilienfeld S. Galantamine: A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002;8:159–176. doi: 10.1111/j.1527-3458.2002.tb00221.x. PubMed DOI PMC
Scott L.J., Goa K.L. Galantamine: A review of its use in Alzheimer’s disease. Drugs. 2000;60:1095–1122. doi: 10.2165/00003495-200060050-00008. PubMed DOI
Zarotsky V., Sramek J.J., Cutler N.R. Galantamine hydrobromide: An agent for Alzheimer’s disease. Am. J. Health Syst. Pharm. 2003;60:446–452. doi: 10.1093/ajhp/60.5.446. PubMed DOI
Hughes A., Musher J., Thomas S.K., Beusterien K.M., Strunk B., Arcona S. Gastrointestinal adverse events in a general population sample of nursing home residents taking cholinesterase inhibitors. Consult. Pharm. 2004;19:713–720. doi: 10.4140/TCP.n.2004.713. PubMed DOI
Loy C., Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2004:CD001747. doi: 10.1002/14651858.CD001747.pub2. PubMed DOI
Orgogozo J.M., Small G.W., Hammond G., Van Baelen B., Schwalen S. Effects of galantamine in patients with mild Alzheimer’s disease. Curr. Med. Res. Opin. 2004;20:1815–1820. doi: 10.1185/030079904X12555. PubMed DOI
Birks J., Craig D. Galantamine for vascular cognitive impairment. Cochrane Database Syst. Rev. 2006:CD004746. doi: 10.1002/14651858.CD004746.pub2. PubMed DOI
Prvulovic D., Hampel H., Pantel J. Galantamine for Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol. 2010;6:345–354. doi: 10.1517/17425251003592137. PubMed DOI
Haake A., Nguyen K., Friedman L., Chakkamparambil B., Grossberg G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf. 2020;19:147–157. doi: 10.1080/14740338.2020.1721456. PubMed DOI
Tamaru T., Kobayashi H., Kishimoto S., Kajiyama G., Shimamoto F., Brown W.R. Histochemical study of colonic cancer in experimental colitis of rats. Dig. Dis. Sci. 1993;38:529–537. doi: 10.1007/BF01316510. PubMed DOI
Dieleman L.A., Ridwan B.U., Tennyson G.S., Beagley K.W., Bucy R.P., Elson C.O. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology. 1994;107:1643–1652. doi: 10.1016/0016-5085(94)90803-6. PubMed DOI
Ni J., Chen S.F., Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut. 1996;39:234–241. doi: 10.1136/gut.39.2.234. PubMed DOI PMC
Kim C.J., Kovacs-Nolan J.A., Yang C., Archbold T., Fan M.Z., Mine Y. l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J. Nutr. Biochem. 2010;21:468–475. doi: 10.1016/j.jnutbio.2009.01.019. PubMed DOI
Lackeyram D., Mine Y., Archbold T., Fan M.Z. The small intestinal apical hydrolase activities are decreased in the piglet with bowel inflammation induced by dextran sodium sulfate. J. Anim. Sci. 2012;90(Suppl. 4):287–289. doi: 10.2527/jas.54010. PubMed DOI
Ibuki M., Fukui K., Kanatani H., Mine Y. Anti-inflammatory effects of mannanase-hydrolyzed copra meal in a porcine model of colitis. J. Vet. Med. Sci. 2014;76:645–651. doi: 10.1292/jvms.13-0424. PubMed DOI PMC
Chassaing B., Aitken J.D., Malleshappa M., Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014;104 doi: 10.1002/0471142735.im1525s104. PubMed DOI PMC
Martin J.C., Bériou G., Josien R. Dextran sulfate sodium (DSS)-induced acute colitis in the rat. Methods Mol. Biol. 2016;1371:197–203. PubMed
Parang B., Barrett C.W., Williams C.S. AOM/DSS model of colitis-associated cancer. Methods Mol. Biol. 2016;1422:297–307. PubMed PMC
Lackeyram D., Young D., Kim C.J., Yang C., Archbold T.L., Mine Y., Fan M.Z. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulfate in young pigs. Physiol. Res. 2017;66:147–162. doi: 10.33549/physiolres.933259. PubMed DOI
Nielsen T.S., Fredborg M., Theil P.K., Yue Y., Bruhn L.V., Andersen V., Purup S. Dietary red meat adversely affects disease severity in a pig model of DSS-induced colitis despite reduction in colonic pro-inflammatory gene expression. Nutrients. 2020;12:1728. doi: 10.3390/nu12061728. PubMed DOI PMC
Tacheci I., Kvetina J., Kunes M., Edakkanambeth Varayil J., Ali S.M., Pavlik M., Kopacova M., Rejchrt S., Bures J., Pleskot M. Electrogastrography in experimental pigs: The influence of gastrointestinal injury induced by dextran sodium sulphate on porcine gastric erythromycin-stimulated myoelectric activity. Neuro Endocrinol. Lett. 2011;32(Suppl. 1):131–136. PubMed
Chen J.Z., McCallum R.W., editors. Principles and Applications. Raven Press; New York, NY, USA: 1994. Electrogastrography.
Parkman H.P., Hasler W.L., Barnett J.L., Eaker E.Y., American Motility Society Clinical GI Motility Testing Task Force Electrogastrography: A document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol. Motil. 2003;15:89–102. doi: 10.1046/j.1365-2982.2003.00396.x. PubMed DOI
Koch K.L., Stern R.M. Handbook of Electrogastrography. Oxford University Press; Oxford, UK: 2004.
Bures J., Kabelac K., Kopacova M., Vorisek V., Siroky M., Palicka V., Rejchrt S. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy. Hepatogastroenterology. 2008;55:1492–1496. PubMed
Murakami H., Matsumoto H., Ueno D., Kawai A., Ensako T., Kaida Y., Abe T., Kubota H., Higashida M., Nakashima H., et al. Current status of multichannel electrogastrography and examples of its use. J. Smooth Muscle Res. 2013;49:78–88. doi: 10.1540/jsmr.49.78. PubMed DOI PMC
Wolpert N., Rebollo I., Tallon-Baudry C. Electrogastrography for psychophysiological research: Practical considerations, analysis pipeline, and normative data in a large sample. Psychophysiology. 2020;57:e13599. doi: 10.1111/psyp.13599. PubMed DOI PMC
Bures J., Kvetina J., Radochova V., Tacheci I., Peterova E., Herman D., Dolezal R., Kopacova M., Rejchrt S., Douda T., et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2020;15:e0227781. doi: 10.1371/journal.pone.0227781. PubMed DOI PMC
Bures J., Kvetina J., Tacheci I., Pavlik M., Kunes M., Rejchrt S., Kuca K., Kopacova M. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J. Appl. Biomed. 2015;13:273–277. doi: 10.1016/j.jab.2015.04.004. DOI
Bures J., Kvetina J., Pavlik M., Kunes M., Kopacova M., Rejchrt S., Jun D., Hrabinova M., Kuca K., Tachecí I. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro Endocrinol. Lett. 2013;34(Suppl. 2):79–83. PubMed
Bures J., Jun D., Hrabinova M., Tacheci I., Kvetina J., Pavlik M., Rejchrt S., Douda T., Kunes M., Kuca K., et al. Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro Endocrinol. Lett. 2015;36(Suppl. 1):150–155. PubMed
Kararli T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 1995;16:351–380. doi: 10.1002/bdd.2510160502. PubMed DOI
Gonzalez L.M., Moeser A.J., Blikslager A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. 2015;166:12–27. doi: 10.1016/j.trsl.2015.01.004. PubMed DOI PMC
Xiao Y., Yan H., Diao H., Yu B., He J., Yu J., Zheng P., Mao X., Luo Y., Chen D. Early gut microbiota intervention suppresses DSS-induced inflammatory responses by deactivating TLR/NLR signalling in pigs. Sci. Rep. 2017;7:3224. doi: 10.1038/s41598-017-03161-6. PubMed DOI PMC
Bures J., Tacheci I., Kvetina J., Radochova V., Prchal L., Kohoutova D., Valis M., Novak M., Dolezal R., Kopacova M., et al. The impact of dextran sodium sulfate-induced gastrointestinal injury on the pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil, and gastric myoelectric activity in experimental pigs. Molecules. 2021;26:2160. doi: 10.3390/molecules26082160. PubMed DOI PMC
Parkman H.P., Trate D.M., Knight L.C., Brown K.L., Maurer A.H., Fisher R.S. Cholinergic effects on human gastric motility. Gut. 1999;45:346–354. doi: 10.1136/gut.45.3.346. PubMed DOI PMC
Brown J.H., Taylor P. Muscarinic receptor agonists and antagonists. In: Brunton L., Lazo J.S., Parker K.L., editors. Goodman & Gilman’s Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2006. pp. 183–200.
Kvetina J., Tacheci I., Pavlik M., Kopacova M., Rejchrt S., Douda T., Kunes M., Bures J. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol. Res. 2015;64(Suppl. 5):S647–S652. doi: 10.33549/physiolres.933227. PubMed DOI
Turiiski V.I., Krustev A.D., Sirakov V.N., Getova D.P. In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract. Eur. J. Pharmacol. 2004;498:233–239. doi: 10.1016/j.ejphar.2004.07.054. PubMed DOI
Vigneault P., Bourgault S., Kaddar N., Caillier B., Pilote S., Patoine D., Simard C., Drolet B. Galantamine (Reminyl) delays cardiac ventricular repolarization and prolongs the QT interval by blocking the HERG current. Eur. J. Pharmacol. 2012;681:68–74. doi: 10.1016/j.ejphar.2012.02.002. PubMed DOI
Tacheci I., Radochova V., Kvetina J., Rejchrt S., Kopacova M., Bures J. Oesophageal manometry in experimental pigs: Methods and initial experience. Acta Med. 2015;58:131–134. doi: 10.14712/18059694.2016.5. PubMed DOI
Tveden-Nyborg P., Bergmann T.K., Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin. Pharmacol. Toxicol. 2018;123:233–235. PubMed
Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123) Council of Europe; Strasbourg, France: 2009.