The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13283S
Grantová Agentura České Republiky
PubMed
33918638
PubMed Central
PMC8070437
DOI
10.3390/molecules26082160
PII: molecules26082160
Knihovny.cz E-zdroje
- Klíčová slova
- 6-O-desmethyldonepezil, dextran sodium sulfate, donepezil, electrogastrography, experimental pigs, gastric myoelectric activity, organ distribution, pharmacokinetics, video capsule enteroscopy,
- MeSH
- donepezil chemie farmakokinetika farmakologie MeSH
- gastrointestinální trakt účinky léků patologie patofyziologie MeSH
- indany metabolismus MeSH
- kapslová endoskopie MeSH
- metabolom * účinky léků MeSH
- migrující myoelektrický komplex * účinky léků MeSH
- piperidiny metabolismus MeSH
- prasata MeSH
- síran dextranu MeSH
- žaludek účinky léků patofyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 6-O-desmethyl donepezil MeSH Prohlížeč
- donepezil MeSH
- indany MeSH
- piperidiny MeSH
- síran dextranu MeSH
Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.
Centre of Biomedical Research University Hospital 500 05 Hradec Kralove Czech Republic
The Royal Marsden Hospital NHS Foundation Trust London SW3 6JJ UK
Zobrazit více v PubMed
Birks J.S., Harvey R.J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2018;6:CD001190. doi: 10.1002/14651858.CD001190.pub3. PubMed DOI
Seltzer B. Donepezil: A review. Expert Opin. Drug. Metab. Toxicol. 2005;1:527–536. doi: 10.1517/17425255.1.3.527. PubMed DOI
Matsui K., Taniguchi S., Yoshimura T. Correlation of the intrinsic clearance of donepezil (Aricept) between in vivo and in vitro studies in rat, dog and human. Xenobiotica. 1999;29:1059–1072. doi: 10.1080/004982599237958. PubMed DOI
Atto R.A., Behnan A.B., Abachi F.T. In vitro kinetic study of donepezil N-oxide metabolites. Irq. J. Pharm. 2011;11:1–9.
Prvulovic D., Schneider B. Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer’s disease. Expert Opin. Drug. Metab. Toxicol. 2014;10:1039–1050. doi: 10.1517/17425255.2014.915028. PubMed DOI
Campbell N.L., Perkins A.J., Gao S., Skaar T.C., Li L., Hendrie H.C., Fowler N., Callahan C.M., Boustani M.A. Adherence and tolerability of Alzheimer’s disease medications: A pragmatic randomized trial. J. Am. Geriatr. Soc. 2017;65:1497–1504. doi: 10.1111/jgs.14827. PubMed DOI PMC
Valis M., Masopust J., Vysata O., Hort J., Dolezal R., Tomek J., Misik J., Kuca K., Karasova J.Z. Concentration of donepezil in the cerebrospinal fluid of AD patients: Evaluation of dosage sufficiency in standard treatment strategy. Neurotox. Res. 2017;31:162–168. doi: 10.1007/s12640-016-9672-y. PubMed DOI PMC
Thomson A.B. Small intestinal disorders in the elderly. Best Pr. Res. Clin. Gastroenterol. 2009;23:861–874. doi: 10.1016/j.bpg.2009.10.009. PubMed DOI
Soenen S., Rayner C.K., Jones K.L., Horowitz M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:12–18. doi: 10.1097/MCO.0000000000000238. PubMed DOI
Hansen K.J., Wilson D.B., Craven T.E., Pearce J.D., English W.P., Edwards M.S., Ayerdi J., Burke G.L. Mesenteric artery disease in the elderly. J. Vasc. Surg. 2004;40:45–52. doi: 10.1016/j.jvs.2004.03.022. PubMed DOI
Bures J., Cyrany J., Kohoutova D., Förstl M., Rejchrt S., Kvetina J., Vorisek V., Kopacova M. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 2010;16:2978–2990. doi: 10.3748/wjg.v16.i24.2978. PubMed DOI PMC
Tai F.W.D., McAlindon M.E. NSAIDs and the small bowel. Curr. Opin. Gastroenterol. 2018;34:175–182. doi: 10.1097/MOG.0000000000000427. PubMed DOI
Tacheci I., Kvetina J., Kunes M., Edakkanambeth Varayil J., Ali S.M., Pavlik M., Kopacova M., Rejchrt S., Bures J., Pleskot M. Electrogastrography in experimental pigs: The influence of gastrointestinal injury induced by dextran sodium sulphate on porcine gastric erythromycin-stimulated myoelectric activity. Neuro. Endocrinol. Lett. 2011;32:131–136. PubMed
Lackeyram D., Young D., Kim C.J., Yang C., Archbold T.L., Mine Y., Fan M.Z. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulfate in young pigs. Physiol. Res. 2017;66:147–162. doi: 10.33549/physiolres.933259. PubMed DOI
Bures J., Kvetina J., Radochova V., Tacheci I., Peterova E., Herman D., Dolezal R., Kopacova M., Rejchrt S., Douda T., et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS ONE. 2020;15:e0227781. doi: 10.1371/journal.pone.0227781. PubMed DOI PMC
Kararli T.T. Comparison of the gastrointestinal anatomy, physiology and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug. Dispos. 1995;16:351–380. doi: 10.1002/bdd.2510160502. PubMed DOI
Suenderhauf C., Parrott N. A physiologically based pharmacokinetic model of the minipig: Data compilation and model implementation. Pharm. Res. 1995;30:1–15. doi: 10.1007/s11095-012-0911-5. PubMed DOI
Gonzalez L.M., Moeser A.J., Blikslager A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. 2015;166:12–27. doi: 10.1016/j.trsl.2015.01.004. PubMed DOI PMC
Tiseo P.J., Perdomo C.A., Friedhoff L.T. Metabolism and elimination of 14C-donepezil in healthy volunteers: A single-dose study. Br. J. Clin. Pharm. 1998;46:19–24. doi: 10.1046/j.1365-2125.1998.0460s1019.x. PubMed DOI PMC
Heydorn W.E. Donepezil (E2020): A new acetylcholinesterase inhibitor. Review of its pharmacology, pharmacokinetics, and utility in the treatment of Alzheimer’s disease. Expert Opin. Investig. Drug. 1997;10:1527–1535. doi: 10.1517/13543784.6.10.1527. PubMed DOI
Amjad M.W., Alotaibi N.M. Formulation and in vitro characterization of donepezil-loaded chitosan nanoparticles. J. Pharm. Res. Int. 2020;32:57598. doi: 10.9734/jpri/2020/v32i1030488. DOI
Gu F.G., Fan H.M., Cong Z.X., Li S., Wang Y., Wu C.Z. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride. Acta Pharm. 2020;70:411–422. doi: 10.2478/acph-2020-0032. PubMed DOI
Sang Z.P., Wang K.R., Shi J., Liu W.M., Cheng X.F., Zhu G.F., Wang Y.L., Zhao Y.Y., Qiao Z.P., Wu A.G., et al. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2020;192:112180. doi: 10.1016/j.ejmech.2020.112180. PubMed DOI
Darreh-Shori T., Meurling L., Pettersson T., Hugosson K., Hellström-Lindahl E., Andreasen N., Minthon L., Nordberg A. Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment. J. Neural Transm. (Vienna) 2006;113:1791–1801. doi: 10.1007/s00702-006-0526-2. PubMed DOI
Tiseo P.J., Rogers S.L., Friedhoff L.T. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br. J. Clin. Pharm. 1998;46:13–18. doi: 10.1046/j.1365-2125.1998.0460s1013.x. PubMed DOI PMC
Darreh-Shori T., Soininen H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies. Curr. Alzheimer Res. 2010;7:67–73. doi: 10.2174/156720510790274455. PubMed DOI
Geerts H., Guillaumat P.O., Grantham C., Bode W., Anciaux K., Sachak S. Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits. Brain Res. 2005;1033:186–193. doi: 10.1016/j.brainres.2004.11.042. PubMed DOI
Groppa F., Coin A., De Rosa G., Granziera S., Alexopoulos C., Pamio M.V., Padrini R. Monitoring plasma levels of donepezil, 5-O-desmethyl-donepezil, 6-O-desmethyl-donepezil, and donepezil-N-oxide by a novel HPLC method in patients with Alzheimer disease. Drug Monit. 2016;38:108–113. doi: 10.1097/FTD.0000000000000246. PubMed DOI
Roman G.C., Rogers S.J. Donepezil: A clinical review of current and emerging indications. Expert Opin. Pharm. 2004;5:161–180. doi: 10.1517/14656566.5.1.161. PubMed DOI
Bures J., Jun D., Hrabinová M., Tacheci I., Kvetina J., Pavlik M., Rejchrt S., Douda T., Kunes M., Kuca K., et al. Impact of tacrine and 7-methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro. Endocrinol. Lett. 2015;36:150–155. PubMed
Bures J., Kvetina J., Pavlik M., Kunes M., Kopacova M., Rejchrt S., Jun D., Hrabinova M., Kuca K., Tacheci I. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro. Endocrinol. Lett. 2013;34:79–83. PubMed
Kopacova M., Tacheci I., Kvetina J., Bures J., Kunes M., Spelda S., Tycova V., Svoboda Z., Rejchrt S. Wireless video capsule enteroscopy in preclinical studies: Methodical design of its applicability in experimental pigs. Dig. Dis. Sci. 2010;55:626–630. doi: 10.1007/s10620-009-0779-3. PubMed DOI PMC
Tacheci I., Kvetina J., Bures J., Osterreicher J., Kunes M., Pejchal J., Rejchrt S., Spelda S., Kopacova M. Wireless capsule endoscopy in enteropathy induced by nonsteroidal anti-inflammatory drugs in pigs. Dig. Dis. Sci. 2010;55:2471–2477. doi: 10.1007/s10620-009-1066-z. PubMed DOI
Zdarova Karasova J., Sestak V., Korabecny J., Mezeiova E., Palicka V., Kuca K., Mzik M. 1-Benzyl-4-methylpiperidinyl moiety in donepezil: The priority ticket across the blood-brain-barrier in rats. J. Chrom. B. 2018;1092:350–358. doi: 10.1016/j.jchromb.2018.06.034. PubMed DOI
Tveden-Nyborg P., Bergmann T.K., Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin. Pharm. Toxicol. 2018;123:233–235. PubMed
Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123) Council of Europe; Strasbourg, France: 2009.
Kilkenny C., Browne W.J., Cuthill I.C., Emerson M., Altman D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC